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We propose a novel morphing algorithm for objects represented by point-sampled geometry.

The fundamental problem of point-sampled geometry morphing is how to set the

correspondence between points of the two objects which are usually of different size. The

two objects are first parameterized by projecting the sample points onto a common

parametric domain. As both objects are densely sampled, we present a novel accelerated

parameterization algorithm employing the technique of LOD. The common parameter

domain is then split recursively into clusters. The correspondence between sample points of

the two objects is established by performing a local mapping in each cluster. As for complex

geometries, the establishment of correspondence is facilitated by decomposing the geometry

into patches using geodesic decomposition curves.

To preserve the features during morphing, a process of features assignment is incorporated.

By re-sampling the in-between object dynamically and adaptively, the cracks that would

occasionally occur during morphing are successfully eliminated. Experiment results show

that our algorithms are fast, stable and easy to implement. High-quality morphing is

produced. Copyright # 2004 John Wiley & Sons, Ltd.
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Introduction

As an effective graphic primitive for modeling and

rendering of highly complex sculptured objects, point

primitives have experienced a major ‘renaissance’ in

recent years, considerable research has been devoted

to the efficient representation,1,2 modeling,3 proces-

sing,4–6 and rendering of point-sampled geometry.1,2,6

These efforts have spawned a new field called point-

based computer graphics.

Morphing of point-sampled geometry is one impor-

tant research area in point-based computer graphics.

Morphing techniques aim at transforming a given

source object into a target object. Morphing techniques

have various applications ranging from special effects in

television and movies to medical imaging and scientific

visualization. Since meshes are the most popular repre-

sentation form of models in computer graphics, not

surprisingly, morphing between objects represented

by meshes, has received a lot of attention.8 Kent et al.9

introduced the idea of topological merging as a way of

establishing correspondence for a wide class of genus-0

polyhedra. Related studies were also conducted on how

to decompose the model into patches each homeo-

morphic to a disk,10,11 and on spherical parameteriza-

tion.12–14 For a good survey on mesh morphing, readers

are referred to Alexa.8

Comparatively little work has been carried out on

morphing of point-sampled geometry. Cmolik15 pre-

sented work on point cloud morphing. Firstly, two

BSP (binary space partition) trees are created by cluster-

ing the source model and the target model. In the next

stage the clusters in the trees are assigned to each other

depending on a certain chosen metric function. Morph-

ing is then performed. The main problem with this

algorithm is the occurrence of cracks whilst dealing

with the non-convex models.

Point cloud is an unstructured set of point samples.

Each point sample is specified by its location in 3D

space, normal vector, color and size. Unlike most of

other surface representations, these discrete points

do not possess any continuity or belong to certain
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homology groups. It is therefore difficult to build the

correspondence of points between two models. Never-

theless, working on point clouds offers a number of

advantages.

Compared with mesh morphing, no complex data

structure addressing surface continuity has to be built

and maintained during the process of parameterization

and correspondence assignment. For mesh morphing it

is troublesome to check if the parameterization is valid

(check if the orientations of the faces are legal), and to

check if it will introduce foldovers during morphing.

Since point-based morphing is independent of the to-

pology of the models, it is never affected by these

problems. Thus the algorithms for morphing point-

based geometries are time and memory efficient and

easier to implement than those for mesh morphing.

In this paper, we propose a novel morphing algorithm

for objects represented by point-sampled geometry. The

fundamental problem of point cloud morphing is how

to set the correspondence between the points of the

source object and the target object. Since the number

of sample points of the two models may be greatly

different, it is certainly not a trivial task to establish

the correspondence. Cmolik15 set the correspondence

based on space partitioning. However, his method is not

applicable to high-quality morphing of non-convex

shapes nor for feature preserving morphing. In contrast

to15, our approach projects the sample points of the two

objects onto a common parameter domain. These pro-

jection points are then clustered within the unified

parametric domain. The correspondence between point

sets of the two objects is then established by performing

a local mapping in each cluster. For objects with com-

plex geometries, we first decompose the geometry into

several patches then build the correspondence between

each pair of patches.

Point-sampled geometry is usually densely sampled.

The number of points in each geometry is normally very

large. The parameterization algorithm proposed in

Floater18 is too slow to deal with such large-scale data

point models. A novel algorithm for accelerating para-

meterization is presented in this paper employing the

level of detail (LOD) technique. In addition, we incor-

porate a features assignment process for point-sample

geometry to preserve features during the morphing.

Due to the variation of the local sampling density

during morphing, some small cracks might occasionally

occur. To eliminate the cracks, a dynamic and adaptive

re-sampling method is proposed. Experimental results

show that our algorithms produce fast and high-quality

morphing.

The rest of the paper is organized as follows: Section 2

proposes an efficient method for parameterizing a

point-sampled patch. Details of our morphing algo-

rithms regarding two point-sampled patches are pre-

sented in section 3. In section 4 we show how to deal

with complex models, while in section 5 we demon-

strate the experimental results. Conclusions and some

topics of future work are given in section 6.

Parameterization
of Point-sampledGeometry

Parameterization of point-sample geometry is the fun-

damental step of our morphing algorithm. As prelimin-

aries, in the following, we first give a brief introduction

to covariance analysis.

CovarianceAnalysis

Covariance analysis can be used to estimate various

local surface properties, such as the normal vector of

the approximation surface or surface variation. The

covariance matrix C of the point cluster P is defined as

C ¼ pi1 � �pp
pik � �pp

� �T
� pi1 � �pp

pik � �pp

� �

where �pp is the centroid of point set P. Since C

is symmetric and positive semi-definite, all

eigenvalues �iði ¼ 0; 1; 2Þ are real-valued and the eigen-

vectors viði ¼ 0; 1; 2Þ form an orthogonal basis. The

eigenvalues �i measure the variation of the point set

along the direction of the corresponding eigenvectors.

If we assume that �0 � �1 � �2, the plane

ðx� �ppÞ : �0 ¼ 0 minimizes the sum of squared distance

from the neighbors of �pp to the plane, if P is the set of

points representing the surface, then the normal v0 of

this plane approximately represents the normal of sur-

face at �pp. The eigenvalue �0 expresses in this particular

case the variation of the surface along the normal v0, or

in other words, it estimates how much the points of

surface deviate from the tangent plane. For a more

detailed description, see16.

Fast ParameterizationAlgorithm

Extending previous work on parameterization of trian-

gle meshes, Levy,17 Zigelman,7 Zwicker5 designed a

novel method for distortion minimal distortion

C. XIAO ET AL.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2004 John Wiley & Sons, Ltd. 202 Comp. Anim. Virtual Worlds 2004; 15: 201–210



parameterization of point clouds. Floater18 also pro-

posed a method called meshless parameterization for

unorganized point sets of a ‘single patch’. The points are

projected onto a planar parameter domain by solving a

global sparse linear system, whose equations arise from

demanding that each interior parameter point be a

convex combination of some neighboring points. As

our approach is an improvement to Floater’s method,

we briefly review meshless parameterization.

Given a sequence of distinct points X ¼ ðx1; . . . ; xNÞ in

R3, which are assumed to be sampled from a patch of

some unknown surface in R3, we assume that the set X

can be split into two disjoint subsets: XI ¼ fx1; . . . xng,

the set of interior points, and XB ¼ fxnþ1; . . . ; xNg, the set

of boundary points, where the points xnþ1; . . . ; xN are

ordered consecutively along the boundary, then para-

meterization is accomplished by two steps.

In the first step the boundary points xnþ1; . . . ; xN are

mapped into the boundary of some convex polygon D in

the plane, by choosing the corresponding parameter

points unþ1; . . . ; uN to lie around @D in some anticlock-

wise order, for example let unþ1; . . . ; uN to lie on unit

circle and determine the distribution of unþ1; . . . ; uN
along @D by some standard polygonal parameteriza-

tion, such as uniform or chord length.

In the second step, a neighborhood Ni ¼
fj : 0 < kxj � xik < rg, a set of points in Xnfxig, is chosen

for each interior point xi 2 XI . Then we choose a set of

strictly positive weights �i;j, for j 2 Ni, such that

X
j2Nj

�ij ¼ 1 ð1Þ

then n parameter points u1; . . . ; un 2 R2 corresponding

to the interior points x1; . . . ; xn 2 R3 can be found by

solving the linear system of n equations

ui ¼
X
j2Ni

�i;juj; i ¼ 1; . . . ; n: ð2Þ

The linear system (2) may be written in the form Au ¼ b,

where A ¼ ðai:jÞ is the square n� n matrix with aii ¼ 1

and aij ¼ ��ij for i 6¼ j; u is the column vector

ðu1; . . . ; unÞT , and b ¼ ðb1; . . . ; bnÞT is the column vector

with

bi ¼
XN
j¼nþ1

�ijuj: ð3Þ

Floater18 derives a weak sufficient condition under

which the linear system (2) is uniquely solvable.

Unfortunately, models represented by point clouds

contain usually thousands, possibly millions of

sample points, and it is therefore time-consuming to

solve the linear system Au ¼ b. Furthermore, the huge

memory cost for the storage of the non-zero terms aij
of a very large sparse matrix A is also unacceptable.

So to parameterize such dense surfaces, we have

to find a faster and more effective parameterization

approach.

The main idea of our approach is to simplify the

densely sampled patch O into a sparsely sampled

patch S, then the meshless parameterization method

is applied to parameterize S into an unit disk. The

point samples of original model are embedded into

the corresponding position in the disk. Our fast

algorithm is accomplished in three successive steps:

1. We generate a simplified model S of the original

model O by Hierarchical Clustering.16 The point

cloud O is split recursively into clusters along the

direction of greatest variation until the size of each

sub-cluster is less than a given threshold. The

normal vector of the split plane can be defined by

the centroid of current cluster and the largest

eigenvector of its covariance matrix (which is v2).

O is now split into clusters fCig. Each cluster Ci is

replaced by its centroid yi. Suppose S consists of the

point set Y ¼ ðy1; . . . ; ytÞ and YI ¼ ðy1; . . . ; ysÞ is the

set of interior points, YB ¼ ðysþ1; . . . ; ytÞ is the set of

boundary points.

2. We perform meshless parameterization to parame-

terize the simplified model S, and get a set of

projection points V ¼ ðv1; . . . ; vtÞ on the unit disk.

3. We calculate the parameter for each original sample

point xk 2 Ci by convex interpolation. First we

find neighbors Ni ¼ fj : 0 < kyj � yik < rg for each

interior point yi 2 Y. And locate yi1; yi2; yi3 in

Ni which are the nearest to xk. Suppose yi1; yi2; yi3
have corresponding projections vi1; vi2; vi3 in the unit

disk. Let �ij be the reciprocal distance weights

�ij ¼ ð1=kxk � yijkÞ=
P

m¼1;2;3ð1=kxk � yimkÞ, and then

xk have a corresponding point uk ¼
P

j¼1;2;3 �ijvij in

the parameter domain.

The ordered boundary points can be acquired by the

methods proposed by Floater18 or by user interaction.

Using a 3D grid data structure, the neighborhood can be

computed efficiently in constant time. In our approach

we use the reciprocal distance weights for the linear

system (2). Figure 1 shows the parameterization step of

our method.
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By simplifying the original patch, the size of the

matrix A is greatly reduced. So compared to18, our

algorithm is superior in both time and space complexity.

Points-sampledGeometry
Morphing

Commonly, there are two problems that must be solved

for morphing between source object and target object.

The first is how to establish the correspondence between

sample points on the two objects. The second is how to

create the morphing paths for each pair of correspond-

ing points. In general, the first problem is more difficult

to tackle.

Our approach establishes the correspondence be-

tween two models in two steps. The first step is the

alignment of corresponding features on the two objects.

In the second step, the two parameter domains are

merged into a common parameter domain to let all the

correspondent features coincide. The merged parameter

domain is split into clusters. In each cluster, mapping of

points between two models can be set up.

Finally, a morph sequence is obtained by interpolat-

ing the positions of two mapped points.

FeatureAlignment

Alexa12 addressed the problem of feature alignment for

genus-0 polyhedron mesh models on a unit sphere.

Similarly to mesh morphing, it is necessary to align

prominent features between the source object and the

target object represented by point-based geometry. By

projecting the corresponding feature points to the same

position on the common parameter domain, we can

easily produce a morphing sequence demonstrating a

natural transition of features of both objects.

A polygonal mesh is generally described by its geo-

metry and connectivity. As the connectivity between

adjacent triangles is kept during the morphing, no

cracking will happen. Nevertheless, point-sampled geo-

metry is represented by discrete points and no connec-

tivity information is preserved. The occasional

occurrence of cracks on the surface during the morphing

(see Figure 4 (a)) becomes a problem.

Suppose two embeddings with points U1, U2 on the

unit disk, and two ordered sets of features which are

represented as a number of indices in the set F1, F2

respectively (we assume jF1j ¼ jF2j). We denote the ith

element of the point sets as u1
i ; u

2
i , and the ith element of

the feature sets as f1
i ; f

2
i . The goal of feature alignment

can be written as 8i:u1
f1
i

¼ u2
f2
i

.

Our algorithms are similar to Alexa12 with some

differences. Face foldover need not be checked in

point-based morphing and the features are aligned on

a unit disk not sphere.

An overview for the algorithm is given as follows:

1. Rotate the first disk so that the summed squared

distance S ¼
P

i ku1
f1
i

� u2
f2
i

k2 is minimized.

2. Define p1
i ¼ u1

f1
i

� u2
f2
i

regarding the ith feature of f1
i

then apply the following mapping to all points u1
j

on U1

8j:u1
j ¼

u1
j þ p1

i ðd� ku1
j � u1

f1
i

kÞ=ð2dÞ ku1
j � u1

f1
i

k < d

u1
j ku1

j � u1
f1
i

� d

8<
:

ð4Þ

where d is the radius of influence of each feature point

on the parametric domain. Apply the above process to

all features f1
i .

3. Perform step 2 with respect to all features of f2
i .

4. Repeat steps 2 and 3 if maxi ku1
f1
i

� u2
f2
i

k > error.

Figure 1. Fast parameterization algorithms. (a) Original model with 98,250 points, (b) The model is simplified to 8,856 points,

(c) Parameterization of the simplified model to a disk (d) Parameterization of the original model.
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Note that features alignment may cause the occurrence

of cracks during morphing. Assume that the original

projection of f1
i on the parametric domain in unit disk is

moved according to (4). If d is larger than p1
i =2, all points

u1
j which are located within the circle of influence will

remain inside of the circle of influence after features

alignment, resulting in a one-to-one map between any

sample point xj and its projection on U1. But the density

of the projection points may be extremely non-uniform

when d=p1
i is close to 1/2. If d is less than p1

i =2, the

wrapped influence circle will overlap the same area

outside the original influence circle. Either of the last

two cases may cause cracks.

In order to eliminate cracks, we would like to take a

larger d. As shown in Figure 2, a larger d works

effectively. The techniques for how to eliminate the

cracks will be discussed further.

Point Pairs Assignment

In this section we discuss how to set the correspondence

between other sample points of the source object and the

target object.

As is known, the actual morphing is the position

transition between assigned point pairs ðsi; tiÞ si 2 S

and ti 2 T where S is the point set of the source model

and T is the point set of the target model. In reality S and

T might contain different numbers of points, and one

point from the source set might be assigned to multiple

points in the target set and vice versa.

To find the correspondence between points of the two

objects, point set U1, U2 are merged into point set U, a

unified parameter domain. After the process of feature

alignment, the corresponding features should coincide

in U. We then split U into clusters, such that the number

of the projection points from either object in each cluster

does not exceed a threshold but includes at least one

point. Mapping of points between S and T is performed

cluster by cluster.

Unit U can then be hierarchically clustered based

on covariance analysis. Each cluster Ci consists of

set Ai ¼ ða1; a2; . . . ; akÞ and Bi ¼ ðb1; b2; . . . ; blÞ,
Ai � S;Bi � T and k � 1; l � 1. The size of Ci should be

less than a threshold �, for example �¼ 10.

The next step is to yield a mapping for points within

cluster Ci. The mapping generates the set of m assign-

ments ðai; bjÞ, where m ¼ maxðk; lÞ.
Assume that k > l, the mapping can be described as

surjective mapping ’ : A ! B

The metric error can be expressed as
Pk

i¼1 j’ðaiÞ � aij2.

A good mapping is to minimize the metric error and run

fast.

We propose an approximate minimal metric error

algorithm as follows. Assume k > l, for each point

bi 2 B, we find a corresponding point ai 2 A which is

not marked and nearest to bi, and then mark it. Assign-

ment ðai; biÞ is built. Then for each unmarked point in A,

a corresponding point is found in B which is nearest to

it. The point couple is also added to assigned point

pairs. As n is usually small (for example, if �¼ 10, then

n < 9), this approach is fast and acceptable in metric

error. By applying this algorithm to all clusters, the

point couples for both models are acquired.

Morphing Path

Once we have established the correspondence between

points of the source object and the target object, the

problem of morphing between two complicated shapes

is reduced to a trivial problem of morphing between the

assigned point pairs ðsi; tiÞ. The coordinates of points of

transition for the point cloud can be determined as below

pathiðtÞ ¼ fðsi; ti; tÞ ¼ ð1 � tÞsi þ t � ti; t 2 ð0; 1Þ ð5Þ

Figure 2. Interpolate the corresponding points at t¼ 0.4, (a) A relatively large cracks with d ¼ 2kpk, (b) A small cracks with

d ¼ 5kpk, (c) No cracks with d ¼ 8kpk.
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We can also apply (5) to other properties of the

point samples, such as color, normal, transparency or

size. Note that the interpolated normal vector should

be normalized during morphing. With the assign-

ments M and morphing path pathi we can perform

morphing between two different-sized point -sampled

geometries.

Dynamic Re-sampling

In this section we focus on preventing the occasional

occurrence of cracks during morphing.

Above, a larger d is adopted to reduce the cracks.

However, due to the projection distortion resultant from

parameterization or the non-uniform mapping intro-

duced by features alignment, some small cracks may

still occur. To eliminate the small cracks, we need to

detect the regions with insufficient sampling density,

then insert new sampled points.

Alexa et al.6 proposed a point-sampled geometry

representation by fitting a local polynomial approxima-

tion to the point set using a moving least squares

method (MLS). The result of the MLS-fitting is a smooth,

2-manifold surface for any point set. They then used

MLS-surfaces to dynamically up-sample the point set to

obtain a high quality smooth surface.

Assume that the point-sampled geometry consists of

an unstructured point cloud P ¼ pi ¼ ðxi;yi; ziÞ
�

j1 � i � ng. The continuous MLS surface S is defined

implicitly as the stationary set of a projection operator

 ðp; rÞ that projects a point onto the MLS surface

S ¼ x 2 R3jð�ðp; xÞ ¼ x
� �

ð6Þ

To evaluate �ðp; rÞ we first compute a local reference

plane

H ¼ x 2 R3jx � n�D ¼ 0
� �

ð7Þ

by minimizing the weighted sum of squared distances

X
p2P

ðp � n�DÞ2�ð p� qkÞ;k ð8Þ

where q is the projection of r onto H and � is the MLS

kernel function. After transforming all points into the

local frame defined by H, a second least squares opti-

mization yields a bivariate polynomial gðu; vÞ that lo-

cally approximates the surface. The projection of r onto

S is then given as  ðp; rÞ ¼ qþ gð0; 0Þ � n (for more de-

tails see6). The characteristics of the surface can be

controlled by the kernel function �. Typically, a

Gaussian �ðtÞ ¼ expð�t2=h2Þ is chosen, where h is a

global scale parameter that determines the feature size

of the resulting surface. Rather than following Alexa,6 to

get a stable solution to (7), we use the Powell iteration

with the initial values n; t; where t¼ 0, and the normal v0

generated by covariance analysis is regarded as a good

initial value for n.

Up-sampling can be also considered as a reconstruc-

tion technique since it prevents the appearance of cracks

by assuring a sufficiently high density of points, as

shown in Figure 3. A problem associated with this

approach is that point samples have to be generated

dynamically during morphing.

Figure 3. MLS up-sampling of the Manhead. (a) Input point-based surface, (b) Up-sampling the regions with insufficient

sampling density, (c) reconstructed MLS surface.
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To detect regions of insufficient sampling density

dynamically, we estimate and record the local sampling

density for each point of the source and target object. We

estimate the local sampling density �i for each pi 2 P by

finding the sphere with minimum radius ri centered at

pi that contains the k-nearest neighbors to pi. Then �i is

defined as �i ¼ k=r2
i . According to (5), let pathiðtÞ be a

point in the transition point cloud, �i is the sampling

density of pathiðtÞ. Let �0i be the sampling density of si, �00i
be the sampling density of ti. Let � be the threshold

value for up-sampling, if �i < ðð1 � tÞ�0i þ t � �00i Þ � �,

then new sample points must be inserted.

To up-sample the surface, firstly, a local linear approx-

imation is built and points nearby are projected onto the

plane. A bounding rectangle is established for the pro-

jected points. Points are uniformly re-sampled in the

rectangle according to a user specified threshold. The

MLS surface is constructed and the re-sampled points

are projected onto it to get the final up-sampling result.

The normal at each sample point can be obtained directly

by evaluating the gradient of the polynomial. As shown in

Figure 4, the up-sampling eliminates the cracks.

Morphingof ComplexModels

In previous sections we present a morphing technique

for point-sampled geometry between two surface

patches. In this section, we will extend the techniques

to dealing with complex point models.

Considering two objects of genus-0, initially, the user

selects some feature on the geometry and these features

compose an ordered sequence. The geodesic curves of

the geometry between the sequenced features are com-

puted.19,20 These geodesic curves make up a closed

decomposition curve on the surface. The genus-0 geo-

metry can then be decomposed into two patches, as

shown in Figure 5(b). The points on the decomposition

curve automatically generate the ordered set of boundary

points which is demanded by the parameterization step.

The set of interior points of each patch is acquired by

applying the algorithms based on a level set method.19

The surface decomposition operation is applied to both

objects. The correspondence between patches is estab-

lished by user interaction. The methods described in

previous sections are then applied. An example of

morphing genus-0 objects is shown in Figure 9.

In a similar way, the homeomorphic non-simple point-

sampled geometries that are not genus-0 can be handled.

Implementation andResults

We have implemented our algorithms in VCþþ6.0 on a

PC with PIII 1.0G, 512M memory. Table 1 shows the

number of iterations and CPU time for each of the

following two component systems:

Au1 ¼ b1; Au2 ¼ b2 ð9Þ

Figure 4. Top, surface with cracks at t¼ 0.5, Bottom, eliminating the small cracks by up-sampling the surface.
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Figures 6 to 8 show the morphing sequence of models

with sophisticated boundary surfaces. No crack appears

in Figures 6 and 7. In Figure 8, little cracks occur during

morphing, the detail of the local area is shown in

Figure 4(a). These cracks are eliminated by dynamically

up-sampling the surface.

Conclusions and FutureWork

Many investigations have focused on meshes morphing,

whilst research on point-sample geometry morphing is

in its original phase. In this paper, we have presented a

novel morphing method for objects represented by

point-sampled geometry. By mapping the sample points

of each object onto a unit disk then merging the two

disks, the correspondence between points of the source

model and the target model can be established. The

occasional little cracks during morphing are eliminated

by up-sampling the surface derived by MLS methods.

Our methods are fast, robust, easy to implement, and

can deal with complex point clouds.

A closed genus-0 point-sampled manifold is topolo-

gically equivalent to a sphere. The sphere is the natural

parameter domain for them. There has been much work

on spherical parameterization of 3D-meshes.11,14,21 In

Figure 5. (a) Geodesic on the surface, (b) Generating the decomposition curve, (c), (d) Patch selection, the blue patch in (c)

corresponds to the blue patch in (d).

Models Num.F #(O) #(S) Num. Iterations. CPU time (Sec.)

Venus\\Manhead 5 40818\\109450 40818\\10580 1920/1890\\250/231 180.41/178.21\\11.11/10.08
Dog\\Cat 5 98250\\84348 10814\\12513 220/251\\260/281 10.11/15.08\\13.11/15.08
Isis\\Rabbit 4 118250\\34234 11214\\34234 243/231\\1685/1599 12.11/11.01\\161.41/158.31

Table1. Performanceofourparameterizationmethodbasedonsimplif|edmodel.Num. F istheNum.of
features, #(O) is the Num. of points of both original models, #(S) is the Num. of points of their
respective simplif|edmodel.The Num. Iterations and CPUtime of the two component systems itera-

tions foreach simplif|edmodels are illustrated

Figure 6. Morphing from Venus to Manhead with 5 features, (a) Venus (40,818 points), (f) Manhead (109,450 points).
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future, we plan to embed the genus-0 geometry into the

unit sphere, then build mappings for the source and

target models without requiring decomposition.
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4. Adams B, Dutré P. Interactive Boolean operations on sur-
fel-bounded solids. In Proceedings of ACM SIGGRAPH
2003, 2003; 651–656.

5. Zwicker M, Pauly M, Knoll O, Gross M. Pointshop 3D: an
interactive system for point-based surface editing. In Pro-
ceedings of SIGGRAPH 2002, San Antonio, Texas, 21–26 July
2002; ACM Transactions on Graphics 2002; 21(3): 322–329.

6. Alexa M, Behr J, Cohen-or D, Fleishman S, Levin D, Silva CT.
Point set surfaces. In Ertl T, Joy KI, Varshney A (eds). Pro-
ceedings of IEEE Visualization 2001, San Diego, California,
21–26 October 2001, IEEE, Piscataway, New Jersey, 2001,
21–28, 537.

7. Zigelman G, Kimmel R, Kiryati N. Texture mapping using
surface flattening via multidimensional scaling. IEEE
Transactions on Visualization and Computer Graphics 2002;
8(2): 198–207.

8. Alexa M. Recent advances in mesh morphing. Computer
Graphics Forum 2002; 21(2): 173–196.

9. Kent JR, Carlson WE, Parent RE. Shape transformation for
polyhedral objects. Computer Graphics (Proceedings of SIG-
GRAPH 92) 1992; 26(2): 47–54.

10. DeCarlo D, Gallier J. Topological evolution of surfaces. In
Proceedings of Graphics Interface’96, Canadian Human-
Computer Communications Society, Toronto: Canada,
1996; 194–203.

11. Gregory A, Stat A, Lin MC, Manocha D, Livingston MA.
Feature-based surface decomposition for correspondence
and morphing between polyhedra. In Proceedings of Compu-
ter Animation ’98, Philadelphia, 1998.

12. Alexa M. Merging polyhedral shapes with scattered fea-
tures. The Visual Computer 2000; 16(1): 26–37.

13. Shapiro A, Tal A. Polyhedron realization for shape trans-
formation. The Visual Computer 1998; 14(8/9): 429–444.

14. Praun E, Hoppe H. Spherical parameterization and
remeshing. In Proceedings of SIGGRAPH 2003, San Diego,
California, 27–31 July 2003; ACM Transactions on Graphics
2003; 22(3): 340–349.

15. Cmolik L, Uller M. Point cloud morphing. http://
www.cg.tuwien.ac.at/studentwork/CESCG/CESCG-2003/
LCmolik/paper.pdf

16. Pauly M, Gross M, Kobbelt L. Efficient simplification of
point-sampled surfaces. In Proceedings of IEEE Visualization
2002, Boston, Massachusetts, 27 October–1 November,
2002; 163–170.

17. Levy B. Constrained texture mapping for polygonal
meshes. In Proceedings of SIGGRAPH 2001, Los Angeles,
California, 12–17 August 2001; 417–424.

18. Floater MS, Reimers M. Meshless parameterization for sur-
face reconstruction. Computer Aided Geometric Design 2001;
18(2): 77–92.

19. Xiao C, Peng Q. Point-based surface decomposition and
patch selection based on level set methods. Submitted.

20. Memoli F, Sapiro G. Fast computation of weighted
distance functions and geodesics on implicit hyper-
surfaces. Journal of Computational Physics 2001; 173(2):
730–764.

21. Gotsman C, Gu X, Sheffer A. Fundamentals of spherical
parameterization for 3D meshes. In Proceedings of
SIGGRAPH 2003, San Diego, California, 27–31 July 2003;
ACM Transactions on Graphics 2003; 22(3): 358–363.

C. XIAO ET AL.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2004 John Wiley & Sons, Ltd. 210 Comp. Anim. Virtual Worlds 2004; 15: 201–210


