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Point Cloud Completion via Skeleton-Detail
Transformer

Wenxiao Zhang, Huajian zhou, Zhen Dong, Jun Liu, Qingan Yan, Chunxia Xiao*

Abstract—Point cloud shape completion plays a central role in diverse 3D vision and robotics applications. Early methods used to
generate global shapes without local detail refinement. Current methods tend to leverage local features to preserve the observed
geometric details. However, they usually adopt the convolutional architecture over the incomplete point cloud to extract local features to
restore the diverse information of both latent shape skeleton and geometric details, where long-distance correlation among the
skeleton and details is ignored. In this work, we present a coarse-to-fine completion framework, which makes full use of both
neighboring and long-distance region cues for point cloud completion. Our network leverages a Skeleton-Detail Transformer, which
contains cross-attention and self-attention layers, to fully explore the correlation from local patterns to global shape and utilize it to
enhance the overall skeleton. Also, we propose a selective attention mechanism to save memory usage in the attention process
without significantly affecting performance. We conduct extensive experiments on the ShapeNet dataset and real-scanned datasets.
Qualitative and quantitative evaluations demonstrate that our proposed network outperforms current state-of-the-art methods.

Index Terms—Point cloud, shape completion, point cloud completion

✦

1 INTRODUCTION

As low-cost sensors like depth cameras and LIDAR are
becoming increasingly available, 3D data has gained extensive
attention in vision and robotics communities. However, view-
point occlusion and low resolution in 3D scans always lead to
incomplete shapes, which can not be directly used in practical
applications. To this end, it is desired to recover complete 3D
models from their partial ones, which have significant values in a
variety of vision tasks [1], [2], [3], [4], [5], [6].

Early learning-based works succeed in performing shape com-
pletion on the volumetric representation of 3D objects, such as
occupied grids or TSDF volume, where convolution operations
can be applied directly [1], [7], [8], [9], [10]. However, volu-
metric representation always leads to expensive memory costs and
low shape fidelity. In contrast, point cloud is a more compact
representation of 3D data.

PCN [11] is the first learning-based work on point cloud
completion. It recovers the completed 3D model via an embedded
global feature vector, but fails to provide fine geometric details.
Recently, some works [12], [13], [14], [15], [16] provide better
completion results by preserving observed geometric details from
the incomplete point shape using local features. However, they
usually leverage convolutional operations to extract local features
to restore the entire object shape, ignoring the long-distance
correlation between the global skeleton and local patterns. As
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Fig. 1: (a) Given a partial input, the proposed network first
reconstructs a coarse completion result and then enhances the
coarse skeleton with neighboring and long-distance local patterns,
as marked in blue and red lines. (b) Compared with current state-
of-the-arts, our method performs better in both detail preservation
and latent shape prediction.

illustrated in Figure 1(a), since the four identical wheels are
apart from each other, only aggregating local features can hardly
leverage the similar semantic structure or symmetry prior from
other wheels to constrain the shape completion and would lead to
undesired distortions.
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This paper intends to explore the connection between local
patterns and global shape for the point cloud completion task.
To do so, we introduce a two-stage coarse-to-fine framework as
shown in Figure 1. In the first stage, we learn a coarse skeleton
containing global shape information, used as anchor points for
consecutive detail enhancement. In the second stage, we establish
the correlation between skeleton anchor points and local pattern
features and enhance geometric details conditioned on the coarse
skeleton.

Specifically, inspired by the Transformer Model [17] from
natural language processing, we propose Skeleton-Detail Trans-
former, which contains a cross-attention layer and self-attention
layers. The cross-attention layer is applied upon the partial input
and coarse skeleton to effectively integrate local pattern features
into coarse skeleton anchor points. The self-attention layer is used
to better propagate the diverse information across the point set in
a global view.

ECG [12] and VRCNet [18] also follows similar two-stage
completion. However, they directly combine the coarse skeleton
and partial input and treats them equally for following feature
learning with local convolutional operations, which cannot ef-
fectively learn a globally explicit correlation between the coarse
skeleton and local pattern.

Moreover, as the proposed attention layers are inspired by
Transformer Model [17], it requires a quadratic dot-product com-
putation, and O(N2) memory usage on a N points point cloud,
which is the major drawback in enhancing prediction capacity.
Inspired by [19], we notice that only a few dot-product pairs
contribute to the major attention; the others can be ignored safely.
We thus propose a selective attention mechanism to only take the
most likely points as query points for feature extraction, which can
efficiently reduce memory usage without significant performance
reduction.

To summarize, our main contributions are:

• We propose a coarse-to-fine point cloud completion net-
work with a novel skeleton-detail transformer, exploring
the correlation between local patterns and the generated
coarse skeleton for more efficient detail recovery.

• We propose a selective attention mechanism that can
greatly reduce memory usage without significantly affect-
ing performance.

• Our proposed skeleton-detail transformer module can also
be plugged into current completion networks.

2 RELATED WORK

Non-learning based shape completion. Shape completion has
long been a widespread problem of interest in the graphics and
vision fields. Some effective descriptors have been developed in
the early years, such as [20], [21], [22], which leverage geometric
cues to fill the missing parts on the surface. However, these
methods are usually limited to filling small holes. Another way
for shape completion is to utilize a symmetry prior [23], [24],
[25]. However, the assumption is too strong for general scenarios.
Some researchers also proposed data-driven methods [26], [27],
[28] which usually retrieve the most similar model based on the
partial input from a large 3D shape database. While sometimes
good results can be obtained, these methods are time-consuming
in the matching process according to the database size.
Learning-based shape completion. Learning-based methods on
shape completion usually use a deep neural network with an

encoder-decoder architecture to directly map the partial input to
a complete shape. Most pioneering works [1], [7], [8], [9], [10]
rely on volumetric representations in which convolution operations
can be applied directly. Since volumetric representations lead to
large computation and memory costs, most works operate on
low-dimension voxel grids, leading to detail missing. In contrast,
PCN [11] directly generates complete shapes with partial point
cloud as input by decoding a global latent feature. Following
works [16], [29], [30], [31], [32], [33], [34], [35] improve the
encoder-decoder architecture to recover more refined completion
results. Other works [36], [37] tackles the point cloud completion
in unpaired tasks. These approaches generate completed point
clouds via decoding a global feature vector with very limited
capability to represent geometric details.

More recent works [16], [32], [33], [34], [35], [38], [39],
[40] have made efforts to preserve the observed geometric details
from the local features in incomplete inputs. NSFA [15] sepa-
rately reconstruct the unknown and known parts. VRC-Net [18]
proposes a variational framework by leveraging the relationship
between structures during the completion process. Pmp-net [16]
accomplish the completion task by learning point moving paths
moving paths. Snowflakenet [41] proposes a snowflake point
deconvolution for point cloud completion. There are also some
networks using voxel-based completion process. GRNet [14] pro-
poses a gridding network for dense point reconstruction. SK-PCN
[42] leverages attention mechanism to predict displacements for
the skeleton and finally combine them with the input. VE-PCN
[43] develops a voxel-based network for point cloud completion
by leveraging edge generation. PoinTR [38] uses a geometry
transformer to predict the missing shape.

Both SK-PCN [42] and our approach use an attention mech-
anism to obtain refined results. The main difference is how SK-
PCN and our method get the refined results from the skeleton.
SK-PCN combines input and skeleton features through a non-local
attention module to predict displacements for each skeletal point,
and add these displacements to the skeleton to get the final results.
While in our method, we leverage a skeleton-detail transformer
to enhance the skeleton feature, and directly reconstruct the
entire shape from the enhanced features. PoinTR [38] leverages
transformer architecture for point completion, but its formulation
is quite different from ours. The main difference is that PoinTR
designed a geometry-aware transformer to predict the missing
part, formulating the point cloud completion task as a set-to-
set translation task. Our method follows a coarse-to-fine pipeline
and designs a skeleton-detail transformer aiming to enhance the
skeleton details and directly predict the entire shape.
Transformer on point cloud. Transformer and self-attention
models have revolutionized machine translation and natural lan-
guage processing [17], [44], [45], [46], [47]. This has inspired the
development of self-attention networks for 2D image recognition
[48], [49], [50], [51]. Recently some works are proposed for
processing point cloud with transformer models. [52], [53], [54]
try to design general point cloud transformer on 3D processing
task such as classification and segmentation. [55] proposes a
transformer model on 3D object detection. [56] propose a pyramid
point cloud transformer for large-scale place recognition.

3 NETWORK ARCHITECTURE

In this section, we elaborate on the detail of our coarse-to-fine
point completion framework with an overview shown in Figure 2.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Se
lf

-a
tt

en
ti

o
n

En
co

d
e

r M
ax-

Po
o

lin
g

D
ec

o
d

e
r

Fe
at

u
re

 E
xt

ra
ct

io
n

Skeleton-Detail
Transformer

Partial 
input 

Coarse 
skeleton

𝑌𝐶
′X 𝑌′

Coarse Skeleton Prediction Skeleton details enhancement

U-Net

𝐹𝑋
𝑒

𝐹c
𝑒

𝐹𝑋

𝐹c

Fig. 2: Overall network architecture. It consists of two stages, which respectively learn the coarse skeleton, and further enhance the
skeleton with local details by a skeleton-detail transformer.
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Fig. 3: Skeleton-Detail Transformer architecture. It consists of a self-attention layer, a cross attention layer, and an optional globally
self-attention layer. The self-attention layer is performed respectively in query and key feature sets, and the cross attention layer
integrates features from local patterns to features of skeleton anchor points. An optional global self-attention layer can be applied to the
combination of enhanced features F ′

X and F ′′
C to further explore the correlations in a global view.

Given X as a partial input point cloud, we first leverage a PCN
auto-encoder [11] to generate the global feature for coarse shape
completion. A coarse skeleton Y ′

C which refers to the coarse,
intermediate completion shape is obtained by decoding the global
feature. However, different from PCN, we additionally involve
a self-attention layer (Section 4.2) before the max-pooling layer
to better aggregate local features. Subsequently, we use an MLP
to extract point-wise features FX and FC from X and Y ′

C , re-
spectively. FX can be seen as local features containing geometric
details, and FC refers to the global skeleton points features. We
then feed FX and FC to a Skeleton-Detail Transformer (Section
4) to integrate the local patterns features from FX to FC and
get enhanced features F e

X and F e
C . Finally, the combination of

F e
X and F e

C are fed into a reconstruction network with U-Net
architecture to get the final details and enhanced results.

ECG [12] also follows a similar two-stage completion, but in
the second stage, it directly combines Y ′

C with X and treat them
equally in the following process with local feature aggregation
operations for detail refinement.

Different from ECG, to address the correlation from the local
pattern to the overall skeleton, we feed FX and FC to our
skeleton-detail transformer, which is detailed in Section 4, to
effectively integrate the local pattern features from FX to FC

in a global view.

4 SKELETON-DETAIL TRANSFORMER

Our skeleton-detail transformer, as illustrated in Figure 3, consists
of a self-attention layer, a cross attention layer, and an optional
global self-attention layer. The inputs are FX and FC , the point-
wise features of X and Y ′

C . PX and PC are the corresponding

positions. The self-attention layer aggregates feature in each point
set with output F ′

X and F ′
C . The cross attention layer elaborates

on exploring the correlation and integrates features F ′
X from local

patterns to features F ′
C of skeleton points, where we get the en-

hanced feature F ′′
C . Finally, an optional global self-attention layer

can be applied to the combination of F ′
X and F ′′

C to propagate
the features further in a global view. The global self-attention
layer can boost the performance in our experiments. However,
it requires extra computation and memory usage accordingly, so
we consider it optional and discuss it in Section 8.7.

We first briefly introduce the general formulation of the Trans-
former Model [17]. Then we present the detail of our self-attention
layer and cross-attention layer. Finally, we introduce a selective
attention mechanism.

4.1 Background of Transformer Model
Let F = {fi} be a set of feature vectors and P = {pi} be the
corresponding positions. The standard self-attention layer with a
single-attention head in Transformer Model [17] first computes a
tuple (query, key, value) and performs the scaled dot-product as:

qi = fiWq, ki = fiWk, vi = fiWv, (1)

yi =
∑
pi∈P

σ(qik
T
j /

√
d+ PE(pi, pj))vj , (2)

where Wq,Wk,Wv are weight matrices for query, key, and value.
d is the feature dimension of fi. PE(·) is the positional encoding
function for input positions. σ(·) is a normalization function, and
softmax is mostly adopted. There also can be multi-attention
heads when computing (q, k, v), but we use single-head attention
considering the memory and computation efficiency.
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4.2 Self-attention Layer
We first introduce a general point transformer, a self-attention
layer for learning feature representations inside a point set. For-
mally, given an input point cloud P with embedded feature F , we
formulate the self-attention layer as follows:

qi = α(fi), ki = β(fi), vi = γ(fi), (3)

y′i =
∑
fj∈F

σ(qik
T
j /

√
d))vj , (4)

yi = fi + δ(fi − y′i), (5)

where α, β, γ are linear projections, and σ is an MLP with
one linear layer. δ is an MLP containing one linear layer with
batch normalization and ReLU nonlinearity. We add Eq. 5 as [52]
indicates that calculating the offset between the self-attention fea-
tures and the input features can get better feature representations.
Positional embedding is discarded in the self-attention layer since
the point features obtained from the point coordinates P already
contain enough positional information.

4.3 Cross-attention Layer
We note that directly applying a self-attention layer on the com-
bination of FX and FC does not get good performance. Since
the coarse skeleton is recovered from a single global vector,
limited information is shared between FX and FC . To this end,
we propose a cross-attention layer to fully explore the correlation
from local patterns to skeleton anchor points before the combined
feature aggregation. The formulation is similar to our self-attention
layer, but with two important modifications: 1) In the cross-
attention layer, only F ′

C are used for computing the queries, and
the keys and values are computed from F ′

X , indicating that we
learn a cross-mapping F ′

X → F ′
C . 2) An additional positional

encoding layer is involved. We found that adding a position
encoding layer can significantly boost the performance for finding
long-range relations from the local patterns to the skeleton anchor
points.

[57], [58] show that mapping the input to a higher dimensional
space using high-frequency functions before passing them to
the network enables a better fitting of data that contains high-
frequency variation. Inspired by [58], given the position p, we
define a mapping function γ which is a mapping from RL into
a higher dimensional space R2L. Formally, the encoding function
we use is:

PE(pi, pj) = MLP (γ(pi)− γ(pj)), (6)

γ(p) = (sin(20πp), cos(20πp), · · · ,
sin(2L−1πp), cos(2L−1πp)) ,

(7)

where we set L = 3 in our architecture.
Give the point-wise features fc ∈ FC , fx ∈ FX , we formulate

the cross-attention layer as follows:

qi = α(fci), ki = β(fxi), vi = γ(fxi), (8)

y′i =

j∑
pi∈Y ′

C ,pj∈X

σ(qik
T
j /

√
d+ PE(pi, pj))vj , (9)

yi = fci + δ(fci − y′i), (10)

where α, β, γ, σ and δ have the same meaning with self-attention
layer.

Algorithm 1 Selective attention mechanism

Input: tensor Q = {qi} ∈ Rm×d,K = {ki} ∈ Rn×d,
V = {vi} ∈ Rn×d. Corresponding features Fq of Q
Initialize: set sampling factor s, U = s×m, A = Fq

1: feed Q to an MLP with two linear layers to get a selective
map M ∈ Rm×1

2: select top U queries under M as Q
3: set A∗ = σ(QKT/

√
d)V

4: replace the top U items in A with A∗ by their original rows
accordingly:

Output: attention feature map A

While this position encoding can also be used in our self-
attention layer, we note that the performance improvement is in-
significant. We give an intuitive explanation: in the cross-attention
layer, the mutual information between F ′

C and F ′
X is very limited,

as the coarse skeleton is recovered from a single global vector,
making it hard to establish the correlation without more specific
positional information. While in the following global self-attention
layer, since a correlation has already been established, it is easier
for feature learning even without additional position information.
Also, it is not hard to find the relations in the same point set in the
first self-attention layer by only leveraging the point coordinates.

Moreover, computing the relative position encoding in every
attention layer is memory-consuming, requiring O(Nq × Nk)
memory usage and extra computation (Nq and Nk are the point
numbers in query and key).

4.4 Selective Attention mechanism

Our designed attention layers require quadratic times dot-product
computation and O(Nq × Nk) memory usage, which causes
heavy resource consumption. A recent work [19] observes that the
attention map after the dot-product is potentially sparse in several
NLP tasks, which means only a few dot-product pairs contribute
to the major attention, and others can be ignored. We find this
observation is also consistent in our completion task.

To this end, we design a selective attention mechanism that
selects the most ‘important’ query points to perform the attention
operation, rather than considering all the points. We give a for-
mulation of our selective attention mechanism in Algorithm 1 and
an illustration in Figure 5. Specifically, we use an MLP with two
linear layers, which extracts each point-wise feature to a scalar as
a selective map. We then select the top U queries to compute
new features A∗ and update the corresponding U items in A
by the computed features A∗. The proposed selective attention
mechanism can be applied in both the self-attention and cross-
attention layers to replace Eq. 4 and Eq. 9, where the unselected
queries will finally have the original feature fi without updates.

We find our selective attention mechanism could save the
memory usage without significantly affecting performance, which
is discussed in Section 8.7.

Intuitively, we can also turn to select the most ‘important’ keys
when aggregating the features to a specific query, but different
queries will require different score maps for each key. It will need
O(Nq×Nk) memory for the score maps, but our mechanism only
needs O(Nq) memory.
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Fig. 4: Reconstruction network. It use a U-Net architecture composed of MLPs, downsampling and upsampling layers, FC layers, and
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Fig. 5: Illustration of selective attention mechanism.

5 RECONSTRUCTION NETWORK

After the skeleton-detail transformer, we get the enhanced features
F e
X and F e

C from FX and FC . We then combine them as the
input to the reconstruction network with the architecture shown in
Figure 4.

The reconstruction network follows a U-Net architecture with
skip connections. We use MLP as the basic module for feature
propagation. For each downsampling and upsampling operation,
we leverage Edge-preserved Pooling and Edge-preserved Un-
pooling modules in Pointatrousgraph [12]. Also, an Edge-aware
Feature Expansion (EFE) module [59] is used to expand point
features depending on the required completion resolution. The
parameter detail of the network is illustrated in the supplementary
material.

6 LOSS FUNCTION

Chamfer Distance (CD) and Earth Mover’s Distance (EMD) are
introduced [60] to measure the differences between two point
clouds (P,Q). We choose the Chamfer distance due to its effi-
ciency over EMD:

LCD(P,Q)=
1

|P |
∑
x∈P

min
y∈Q

∥x− y∥2 +
1

|Q|
∑
y∈Q

min
x∈P

∥y − x∥2.

(11)

Different from previous works [12], [15] which add additional
uniform loss or repulsion loss to the completion results, we only
leverage Chamfer Distance on the coarse skeleton and final result.
We jointly train the network by minimizing the loss as:

L = αLCD(Y ′
C , Ygt) + LCD(Y ′, Ygt). (12)

7 IMPLEMENTATION DETAILS

We use a Pytorch implementation for our model, trained for 100
epochs with a batch size of 32 and an Adam optimizer. The initial
learning rate is set to 0.0001, decaying by 0.7 for every 20 epochs.
The point number in the generated coarse skeleton is set to 1024.
Self-attention layers Given the following definition:

qi = α(fi), ki = β(fi), vi = γ(fi),

y′i =

pj∑
pi∈P

σ(qik
T
j /

√
d+ PE(pi, pj))vj ,

yi = fi + δ(fi − y′i),

PE(pi, pj) = MLP (γ(pi)− γ(pj)),

fi ∈ Rdf , qi, ki ∈ Rdqk , vi ∈ Rdv .

(13)

We set dqk = df/4 and dv = df . For PE(·), we use the same
implementation in [12] with L = 3, and the MLP in PE(·) restored
the features from 2L channels to 1 channel.
Coarse completion auto-encoder We use the auto-encoder in
PCN with the same parameters, but apply a self-attention layer to
the point-wise features before the max-pooling layer.
U-Net Figure 6 details our U-Net specification for detail enhance-
ment. We add skip-connections within each network hierarchy
similar to MPU [66]. MLP parameters are given as (input channel,
output channel).

8 EXPERIMENTS

We test our method on two synthetic datasets and two real scanned
datasets. The model with the optional global self-attention layer is
used as our method if without a special description.

8.1 Datasets
PCN PCN [11] creates a dataset based on a subset of the
Shapenet [67] dataset. In our experiments, complete point clouds
contain 16384 points and 2048 points for partial point clouds. The
training set includes 28974 different models from 8 categories.
Each model has a complete point cloud with 8 partial point
clouds taken from different viewpoints for data augmentation.
The validation set contains 100 models. The testing contains 1200
models with 150 models in 8 categories.
Completion3D The Completion3D benchmark [29] is composed
of 28,974 and 800 samples from ShapeNet dataset for training and
validation, respectively. Unlike the ShapeNet dataset generated by
PCN, there are only 2,048 points in the ground truth point clouds.
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Method Avg. Plane Cabinet Car Chair Lamp Couch Table Watercraft
CD F1 CD F1 CD F1 CD F1 CD F1 CD F1 CD F1 CD F1 CD F1

AtlasNet [61] 10.85 0.616 6.37 0.845 11.94 0.552 10.10 0.630 12.06 0.552 12.37 0.565 12.99 0.500 10.33 0.660 10.61 0.624
FoldingNet [62] 14.31 0.299 9.49 0.322 15.80 0.642 12.61 0.237 15.55 0.382 16.41 0.236 15.97 0.219 13.65 0.197 14.99 0.361

PCN [11] 9.64 0.695 5.50 0.881 22.70 0.651 10.63 0.725 8.70 0.625 11.00 0.638 11.34 0.581 11.68 0.765 8.59 0.697
TopNet [29] 12.15 0.503 7.61 0.771 13.31 0.404 10.90 0.544 13.82 0.413 14.44 0.408 14.78 0.350 11.22 0.572 11.12 0.560
MSN [33] - 0.705 - 0.885 - 0.644 - 0.665 - 0.657 - 0.699 - 0.604 - 0.782 - 0.708

GRNet [14] 8.83 0.708 6.45 0.843 10.37 0.618 9.45 0.682 9.41 0.673 7.96 0.761 10.51 0.605 8.44 0.751 8.04 0.750
Wang et al. [13] 8.51 0.652 4.79 0.918 9.97 0.379 8.31 0.687 9.49 0.637 8.94 0.603 10.69 0.517 7.81 0.721 8.05 0.759
PMP-Net [16] 8.73 - 5.65 - 11.24 - 9.64 - 9.51 - 6.95 - 10.83 - 8.72 - 7.25 -

ECG [12] 8.63 0.724 5.23 0.899 10.12 0.631 8.36 0.704 9.43 0.687 8.53 0.755 10.94 0.579 7.98 0.790 8.16 0.750
NSFA [15] 8.32 0.734 5.03 0.896 10.51 0.629 9.11 0.674 9.16 0.686 7.45 0.793 10.46 0.608 7.56 0.806 7.28 0.781

SK-PCN [43] 8.49 0.736 5.09 0.911 9.98 0.643 8.22 0.716 9.29 0.699 8.39 0.767 10.80 0.591 7.84 0.802 8.02 0.762
Pointr [38] 8.38 0.754 4.75 0.915 10.47 0.665 8.68 0.718 9.39 0.710 7.75 0.798 10.93 0.632 7.78 0.796 7.29 0.797

Ours 8.24 0.754 4.60 0.924 10.05 0.659 8.16 0.733 9.15 0.724 8.12 0.795 10.65 0.609 7.64 0.807 7.66 0.778

TABLE 1: Quantitative comparisons on PCN dataset with state-of-the-art methods in terms of L1 Chamfer Distance ×10−3 and F1-
Score.

Methods Average Plane Cabinet Car Chair Lamp Couch Table Watercraft
FoldingNet [62] 19.07 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51

PCN [11] 18.22 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73
PointSetVoting [63] 18.18 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16

AtlasNet [61] 17.77 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62
SoftPoolNet [64] 16.15 5.81 24.53 11.35 23.63 18.54 20.34 16.89 7.14

TopNet [29] 14.25 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82
SA-Net [16] 11.22 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84
GRNet [14] 10.64 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86

PMP-Net [16] 9.23 3.99 14.70 8.55 10.21 9.27 12.43 8.51 5.77
Wang et al. [13] 9.21 3.38 13.17 8.31 10.62 10.00 12.86 9.16 5.80

SCRN [65] 9.13 3.35 12.81 7.78 9.88 10.12 12.95 9.77 6.10
VRCNet [18] 8.12 3.94 10.93 6.44 9.32 8.32 11.35 8.60 5.78
VE-PCN [43] 8.10 3.83 12.74 7.86 8.66 7.24 11.47 7.88 4.75

SnowflakeNet [41] 7.60 3.48 11.09 6.90 8.75 8.42 10.15 6.46 5.32
Ours 7.78 2.74 10.25 6.33 8.4 9.85 11.06 7.54 5.88

TABLE 2: Quantitative comparisons on Completion3D dataset with state-of-the-art methods in terms of L2 Chamfer distance ×10−4.
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Edge-Pooling (ratio=0.5)

MLP(840, 1800)

Edge-Pooling(ratio=0.5)

MLP(1024+1800, 1024)

Upsampling (ratio=2)

MLP(1024+840, 768)

Upsampling (ratio=2)
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MLP(512+120, 256)

FC Layers(256, 3)

MLP(120, 120)

MaxPooling

Duplicate

Fig. 6: Detailed U-Net parameters.

Kitti We also test our methods on real-world scans on Kitti [68].
The testing scans are cars extracted from each frame according to
the ground truth object bounding boxes. The testing set contains
2483 partial point clouds labeled as cars.
ScanNet The ScanNet [69] datasets are obtained from [36], which
extracts 550 chairs objects and 550 tables from ScanNet dataset,
and manually aligns each model to be consistently orientated with
models in ShapeNet dataset. We use the trained model on PCN
dataset for testing on both real scanned datasets.

8.2 Evaluation Metrics
Besides the Chamfer Distance introduced in Section 6, we also use
the F1-Score metric introduced in [14]. Let T = {(xi, yi, zi)}nT

i=1

be the ground truth and R = {(xi, yi, zi)}nR
i=1 be a reconstructed

point set being evaluated, where nT and nR are the numbers of
points of T and R respectively. F1-Score is defined as:

F1-score(d) =
2P (d)R(d)

P (d) +R(d)
, (14)

where P (d) and R(d) denote the precision and recall for a
distance threshold d, respectively.

P (d) =
1

nR

∑
r∈R

[
min
t∈T

||t− r|| < d

]
, (15)

R(d) =
1

nT

∑
t∈T

[
min
r∈R

||t− r|| < d

]
. (16)

Unlike Chamfer distance, a higher F1-Score means better perfor-
mance.
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8.3 Completion Results on PCN dataset
We also compare our network on PCN dataset with several state-
of-the-art baseline methods. L1 Chamfer Distance is involved as
the evaluation metric. In addition, as is pointed out in [70] that
CD can be misleading in some cases, F1-Score [71] is also used
for evaluation in our experiments. Compared with CD, which
computes the distance between two point clouds, F1-Score can
better judge the similarity between two surfaces. For the baseline
methods, the results of [12], [15] are produced from the codes and
pre-trained models released in their official projects at Github,
and the other methods are cited from [14], [16] and their original
papers. We set the sampling ratio to 1.0 in the selective attention
mechanism to get the best performance.

The quantitative results are shown in Table 1. It is notable that
our network achieves the highest F1-Score and lowest L1 CD on
average. Also, it is notable that though our method performance is
not as good as NSFA on CD in some categories such as chair and
lamp, our method gets a better F1-Score than NSFA, indicating
our method can guarantee a more accurate surface. This can also
be observed in the visual comparison. PoinTR achieves a similar
F1-Score with our method, but our method achieves a lower L1
CD.

Figure 7 shows the qualitative comparison of our method.
While other methods can preserve the detail in completed results,
the distortion is also visible. In contrast, our results predict a
more accurate shape with detailed patterns and less distortion.
For instance, in Figure 7 (a), our method can better recover the
missing leg of the chair while preserving the details. In contrast,
results from other methods are very noisy, which demonstrates
the ability of our network to enhance the shape with local details
efficiently. More visual comparisons are shown in Figure 11.

We also compare our method with methods that support multi-
resolution completion with different output point numbers in Table
3. It shows that our network outperforms other baselines in various
resolutions.

Points 2048 4096 8192
CD F1 CD F1 CD F1

PCN [11] 14.17 0.417 12.30 0.554 10.77 0.649
Wang et al. [13] 15.28 0.387 13.43 0.510 11.85 0.600

ECG [12] 13.01 0.462 13.43 0.510 9.40 0.701
GRNet [14] 12.86 0.384 11.14 0.534 9.78 0.648
NSFA [15] 12.54 0.485 10.69 0.630 9.16 0.724

Ours 12.46 0.490 10.68 0.636 9.14 0.725

TABLE 3: Results on PCN dataset with multi-resolution.

8.4 Completion Results on Completion3D
Following GRNet [14], we adopt the model with the lowest CD on
the validation set and recover point clouds on the Completion3D
testing set. Next, random subsampling is applied to the generated
point clouds to obtain 2,048 points for benchmark evaluation. The
results are reported in Table 2 in accordance with the comple-
tion3D leaderboard. Our network ranks first on the Completion3D
benchmark.

8.5 Completion Results on Kitti / ScanNet
As there is no complete ground truth for Kitti and ScanNet, we
therefore use two metrics proposed in PCN to quantitatively eval-
uate the performance: 1) Fidelity (Fid.) error, which is the average
distance from each point in the input to its nearest neighbor in

the output. This measures how well the input is preserved. 2)
Minimal Matching Distance (MMD), which is the L1 Chamfer
Distance between the output and the car/table/chair point cloud
from ShapeNet that is closest to the output point cloud in terms
of CD. This measures how much the output resembles a typical
car/table/chair.

Methods Kitti ScanNet
Chair

ScanNet
Table

Fid. MMD Fid. MMD Fid. MMD
PCN [11] 1.73 15.75 13.38 22.79 8.36 29.94

GRNet [14] 1.94 27.65 5.92 21.66 5.11 18.37
NSFA [15] 1.03 19.85 12.24 34.55 8.72 28.48

SK-PCN [42] 0.21 16.36 3.14 22.30 2.21 16.14
Pointr [38] 0.00 15.31 - - - -

Ours 0.96 14.36 11.46 16.74 7.67 13.77

TABLE 4: Quantitative comparisons on Kitti and ScanNet datasets
with Fidelity error and MMD ×10−3.

The quantitative and qualitative results are shown in Table
4 and Figure 8,9 respectively. Our method achieves the lowest
MMD and more plausible visualization results in both results.
GRNet [14] and SK-PCN [42] achieve the lower fidelity error in
table and chair, but the MMD is higher than ours. The qualitative
comparison shows that other methods also present reasonable
results, but the distortion and blur are obvious. The fidelity error in
Kitti dataset is significantly lower than ScanNet due to the fewer
point number of partial input as shown in Figure 8. PoinTR [38]
achieves zero fidelity error as it totally preserve the input points in
the final results.

8.6 Visualization of how the cross-transformer aggre-
gates local features

As we have claimed the ability of our proposed cross-attention
module to aggregate local features into the global skeleton, we
wonder how the cross-attention aggregates local features on dif-
ferent parts of the global skeleton. To this end, we visualize a
heatmap of the local input features for different query points in
the coarse skeleton. We visualize the weight wij of each point pj
in partial input to the certain query point pi in coarse skeleton.
Specifically, according to Equation 9, wij is defined as:

wij = σ(qik
T
j /

√
d+ PE(pi, pj)). (17)

Note that the weights are normalized to [0,1].
Visualization results are shown in Figure 10. The visualization

shows that the transformer module can aggregate long-distance
information based on the relationship for a certain query point.
For example, the transformer module tends to aggregate the cor-
responding wheel information for a point near the missing wheel
in Figure 10 (I)(a). In Figure 10 (II)(a), high weights are given to
the chair legs in partial input to provide more cues to complete the
missing leg of the chair. In addition, we can see that the details are
enhanced after the corresponding features are aggregated to the
coarse skeleton features through our cross-transformer.

Another interesting observation is that in Figure 10 (III)(c), the
transformer gives high weights for both the propeller and the wing
for a point in the head of the plane. We consider this because the
shape of the incomplete wing is similar to the plane’s propeller.
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Fig. 7: Visual comparisons with state-of-the-art methods on ShapeNet dataset.

1st stage 2nd stage CD F1 Memory
Usage(Mib)

Model
Size(Mib)

Inf.
Time(ms)SA SA CA GSA coarse completion coarse completion

15.40 8.69 0.297 0.724 348.86 54.18 213
✓ 15.21 8.54 0.301 0.730 424.85 56.69 236
✓ ✓ 15.23 8.43 0.303 0.736 512.32 56.83 251
✓ ✓ ✓ 14.91 8.31 0.307 0.746 518.65 57.11 260
✓ ✓ ✓ 15.01 8.27 0.307 0.750 550.65 56.97 258
✓ ✓ ✓ ✓ 14.91 8.24 0.313 0.753 606.12 57.25 295

TABLE 5: Ablation study on different combinations of attention layers.

8.7 Ablation studies

We give ablation studies on our network with the output of 16384
points and batch size 1.
Evaluation of selective attention mechanism. We give a study of
our selective attention mechanism about the memory usage in the
forward/backward pass, the layer size, and the inference (Inf.) time
of a single attention layer with different sampling factors in Table
6, where the point number of the coarse skeleton is 1024. The CD

and F1-Score on final completion results are also reported with
the selective attention mechanism applied to all attention layers
of the network. Table 6 also shows that the network can produce
reasonable results with a sampling factor bigger than 0.5.
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Fig. 8: Visual comparisons with state-of-the-art methods on Kitti dataset.

Sampling
factor

Memory
Usage (Mib)

Layer.
Size (Mib)

Inf.
Time (ms) CD F1

0.25 17.98 0.19 28 9.23 0.691
0.5 26.09 0.19 29 8.47 0.716
0.75 34.21 0.19 31 8.34 0.739
1.0 42.33 0.19 32 8.24 0.753

TABLE 6: Efficiency of selective attention mechanism with dif-
ferent sampling factors.

Furthermore, we find that the performance of our selective
attention mechanism is largely influenced by the point number of
the coarse skeleton when performing cross-attention. For example,
in Table 6, setting the factor to 0.25 will result in only 256 query
points of the coarse skeleton to perform cross-attention, but 256
points are hard to cover the object surface. So we give further
studies with 2048 and 4096 points in coarse skeleton in Table 7.
It shows that the network can achieve better performance with
a small sampling factor when the point number of the coarse
skeleton becomes larger.

Sampling factor 1024 points 2048 points 4096 points
0.25 9.23 8.53 8.39
0.50 8.47 8.41 8.38
0.75 8.34 8.27 8.29
1.0 8.24 8.21 8.24

TABLE 7: Chamfer distance with different coarse skeleton point
numbers on PCN dataset.

We also tried using FPS sampling when we initially designed
our network. We downsample the point cloud and update the
features of the points selected by FPS only. We show the results in
Table 8. The original point number of the skeleton is 1024. We can
observe that though the performance of using FPS is acceptable,
our selective attention mechanism can achieve better results.
Evaluation of proposed attention layers. Table 5 demonstrates
the ablation studies conducted on our proposed attention layers. In
the first stage, we test the effectiveness of adding a self-attention

Sampling factor FPS elective attention mechanism
0.25 11.21 9.23
0.50 9.32 8.47
0.75 8.39 8.34
1.0 8.24 8.24

TABLE 8: Chamfer distance with different points and selecting
strategy on PCN dataset.

layer. In the second stage, we test different combinations of self-
attention, cross-attention, and global self-attention layers. CD and
F1-Score from the first and second stages are reported, as well as
the memory usage in the forward/backward pass, inference time,
and model size.
U-Net analysis. We also give an ablation study for the U-Net
design. We try to replace the current U-Net with PointNet, Point-
Net++, DGCNN auto-encoder with the results shown in Table 9.
We find that our U-Net achieves the best performance, and the
results of DGCNN are also acceptable, but using vanilla PointNet,
PointNet++ can hardly achieve acceptable results.

U-Net CD F1
PointNet 9.65 0.672

PointNet++ 9.21 0.693
DGCNN 8.95 0.710

PointNet++ with skip connection 8.65 0.730
Ours 8.24 0.754

TABLE 9: Chamfer distance and F1-Score with different U-Net
choice on PCN dataset.

8.8 Comparison about model resources usage

We report the resource usage by GRNet, NSFA, and our network
in Table 10. GRNet and our network are implemented using
PyTorch, and we use the official implementation (by TensorFlow)
for NSFA. To achieve a fair comparison for the inference time, we
use the same batch size 1 and test all methods using a single
NVIDIA GTX 2080Ti on the same workstation. Our network
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Fig. 9: Visual comparisons with state-of-the-art methods on ScanNet dataset.

has the least model size and achieves plausible improvements in
completion qualities with an acceptable increment in the inference
time.

Methods Model size (Mib) Inference time (ms)
GRNet 76.70 147
NSFA 64.01 234
Ours 57.11 260

TABLE 10: Model resources usage of different methods.

9 DISCUSSION

Can the Skeleton-Detail Transformer be applied to other
completion networks?

Our proposed transformer module is proposed to aggregate
the local features from the partial input into the coarse completion
shape. Theoretically, this transformer module can be applied to
any completion network with a coarse-to-fine style.

To this end, we try to integrate our skeleton-detail transformer
into other coarse-to-fine frameworks (Wang et al., VRCNet).

Table 11 shows the results of these networks before and after
being integrated with our transformer. Note that VRCNet does
not conduct experiments on PCN dataset. NSFA does not follow
a coarse-to-fine framework, and GRNet uses a totally different
baseline to get the refined shape, so we do not involves these
two approaches. In addition, we try replacing the U-Net with
PointNet++ autoencoder. Table 11 shows our transformer can
also boost the performance with other frameworks, especially on
Completion3D benchmark, and using the U-Net achieves a trade-
off between performance and model size.

Methods PCN dataset Completion3D Model
SizeBefore After Before After

PointNet++ U-Net 9.67 9.15 12.15 10.67 31Mib
Wang et al. 8.51 8.27 10.70 8.97 61Mib

VRCNet - - 8.12 7.69 67Mib
Ours 8.63 8.24 8.65 7.78 54Mib

TABLE 11: Chamfer distance with our transformer applied to
other frameworks.
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Fig. 10: Visualization of the weights for points in partial input to a query point in coarse skeleton when performing cross-attention.

10 CONCLUSION

In this paper, we have proposed a novel coarse-to-fine point
cloud completion network leveraging the transformer model.
The proposed skeleton-detail transformer effectively enhances the
global shape with local geometric details by establishing the
correlations between each other. We also consider the memory
usage of the proposed transformer and thus propose a selective
attention mechanism. The synthetic and real-world data experi-
ments demonstrated our network’s effectiveness in enhancing the
geometric details in point cloud completion.
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