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Abstract

Existing image dehazing methods have made remarkable progress. However, they generally perform poorly on images with
dense haze, and often suffer from unsatisfactory results with detail degradation or color distortion. In this paper, we propose
a density-aware diffusion model (DADM) for image dehazing. Guided by the haze density, our DADM can handle images
with dense haze and complex environments. Specifically, we introduce a density-aware dehazing network (DADNet) in the
reverse diffusion process, which can help DADM gradually recover a clear haze-free image from a haze image. To improve the
performance of the network, we design a cross-feature density extraction module (CDEModule) to extract the haze density for
the image and a density-guided feature fusion block (DFFBlock) to learn the effective contextual features. Furthermore, we
introduce an indirect sampling strategy in the test sampling process, which not only suppresses the accumulation of errors but
also ensures the stability of the results. Extensive experiments on popular benchmarks validate the superior performance of the
proposed method. The code is released in https://github.com/benchacha/DADM.
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1. Introduction

Images captured in hazy environments often become blurred due
to the interference of haze, affecting the visibility of the images.
Through image dehazing techniques, we can significantly improve
the clarity and visual quality of images, providing support for
some related computer vision tasks, such as autonomous driving
[CMC*24, CWC™*23], surveillance systems [KDW*23, RCV*23,
LZZ*24], object detection [CLS*18, 1723, LLW*22], and image
segmentation [ZSQ* 17, CPK*17,CLZX21]. Clear images can im-
prove the accuracy and effectiveness of these tasks. Therefore, im-
age dehazing is a necessary and important task to enhance the qual-
ity of the image.

Traditional image dehazing methods are mostly based on prior
knowledge, such as dark channel prior (DCP) [HST10] and color
attenuation prior (CAP) [ZMS15]. However, these methods have
poor generalization ability. Subsequently, deep learning technolo-
gies have made significant progress in image dehazing [QWB™20,
WQL*21,CXJ*16,SHQD23, GYA*22], demonstrating better gen-
eralization performance. They can obtain good results when deal-
ing with regular haze images, but the performance decreases
when facing dense haze images. CNN-based methods [QWB™*20,
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WQL*21,DPX*20,CXJ* 16, CRCK23] are limited by the finite re-
ceptive field and difficult to handle long-distance dependencies, re-
sulting in haze residual or local distortion, as shown in Figure 1(d).
While Transformer-based methods [SHQD23, GYA*22, QZW*23]
can capture global information, they relatively weaken the utiliza-
tion of local features. They may lead to the loss of features in re-
gions with dense haze, generating results with detail distortion, as
shown in Figure 1(e).

Recently, the diffusion model [SSDK*20] has been widely uti-
lized in the field of image generation due to the strong ability for
modeling the distribution of image pixels. However, since the exist-
ing diffusion models [LGZ*23, YHZ*23] do not take into account
the variability of haze density in images, the straightforward appli-
cation of these diffusion models for image dehazing may not yield
the desired results, especially for dense haze images. As shown in
Figure 1(f), artifacts or distortions may appear in the dehazing re-
sult, making the appearance of certain regions seem unrealistic.

To address the aforementioned issues, we introduce a density-
aware diffusion model (DADM) for image dehazing, which uses
the density of the haze as guidance information to help the net-
work reconstruct a clear image. Figure 2 presents the framework of
the proposed DADM. Based on the IR-SDE framework [LGZ*23],
we train the diffusion model DADM to learn the mapping from
haze images to haze-free images. In the reverse diffusion process in
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(a) Input

(d) Focal [CRCK23] (e) MB [QZW*23]  (f) IR-SDE [LGZ*23]

Figure 1: Image dehazing. (a) is the haze image from NH-Haze
dataset. Due to the dense haze in the image, existing image dehaz-
ing methods may suffer from haze residual or texture distortion,
such as (d), (e) and (f). Considering the density of haze in the im-
age, our method can produce a more desirable result (D).

DADM, we propose a density-aware dehazing network (DADNet)
to estimate the noise in the input image and remove the noise (haze
layer) in the image. In the testing process, we take the haze im-
age as input and gradually remove the haze through the pre-trained
DADNet to get a haze-free image.

To improve the performance of DADNet, we introduce a cross-
feature density extraction module (CDEModule) to extract the haze
density in the image. We use the extracted haze density as auxiliary
information to provide more precise and comprehensive guidance
for DADNet. Furthermore, we propose a density-guided feature fu-
sion block (DFFBIlock) to fuse the features based on the haze den-
sity information. Specifically, we use a density-aware feature ex-
traction unit (DFEUnit) to extract key features and a haze-aware
feature optimization unit (DFEUnit) to learn effective contextual
information for feature reconstruction.

During the testing process, the diffusion model gradually re-
stores the haze image to a clear haze-free image based on the map-
ping learned during training. However, since the density of haze in
images varies from scene to scene, the number of time steps re-
quired to restore these images to clarity will also vary. When the
dehazing result reaches an optimal value during the testing pro-
cess, continuing the denoising process may mistake the non-haze
features as noise and remove them, resulting in a degradation of the
final dehazing image, as shown in Figure 4. To address this chal-
lenge, we introduce an indirect sampling strategy, which effectively
reduces errors in the sampling process and improves the accuracy
and stability of the testing process.

In summary, our main contributions are as follows:

e We present a density-aware diffusion model (DADM) for image

dehazing, which takes full advantage of the haze density in the
image and produce high-quality dehazing results.

e We introduce a density-aware dehazing network in the reverse
diffusion process to remove the haze in the image, in which we
design a CDEModule to extract the haze density and a DFFBlock
to learn effective contextual information.

e We design an indirect sampling strategy to effectively reduce er-
rors in the sampling process, which can improve the accuracy
and stability of the testing process.

Experimental results on the four public datasets show that our
proposed methods outperforms other SOTAs methods. Beside, our
method shows better visual effects on images with dense haze and
complex scenes.

2. Related Work

Traditional Dehazing Method. Traditional methods often rely
on image priors and physical models to achieve image dehaz-
ing [HST10,ZMS15,JR13,XG12,LYX17]. Among them, the dark
channel prior algorithm (DCP) [HST10] estimated the haze density
by calculating the dark channel of the image, achieving the dehaz-
ing effect. Additionally, the color attenuation prior (CAP) [ZMS15]
algorithm recovered the original image by estimating the depth of
the scene. The histogram equalization algorithm [JR13] equalized
the histogram of the input image, resulting in a uniform distribu-
tion of pixel values across the grayscale range. However, traditional
methods have certain limitations, with relatively weak generaliza-
tion capabilities. With the rapid development of deep learning tech-
niques, methods based on neural networks have gradually become
the mainstream, bringing significant advancements in image dehaz-
ing.

CNN-based Image Dehazing. Convolutional Neural Networks
(CNNps) utilize deep convolutions to extract image features for im-
age dehazing [CXJ*16, DPX*20, QWB*20, WQL*21, ZLZX23].
Early attempts such as DehazeNet [CXJ*16] focused on local fea-
tures through end-to-end learning, laying the foundation for image
dehazing. Subsequent methods like MSBDN [DPX*20] adapted
better to different haze intensities and scenes through convolu-
tions and deconvolutions, achieving significant progress. FFA-
Net [QWB*20] introduced feature fusion and attention mecha-
nisms, further improving the effect of image dehazing. AECR-Net
[WQL*21] applied contrastive learning to image dehazing task, en-
hancing the haze removal capabilities. These methods show that
with clever networks and effective feature utilization, CNN-based
methods can effectively improve the quality and robustness of im-
age dehazing. However, CNNs have difficulties in handling long-
range dependencies, thus still exhibiting limitations when process-
ing global information and complex scenes.

Transformer-based Image Dehazing. Recently, transformer
models have also been introduced to handle image dehazing
[ZAK*22,SHQD23,GYA*22,QZW*23], which can solve the prob-
lem of long-range dependencies. Restormer [ZAK*22] effectively
captured the interactions between distant pixels in images through
multi-head attention and feed-forward networks. DehazeFormer
[SHQD23] proposed a new feature fusion scheme for image dehaz-
ing. Dehamer [GYA*22] combined CNN and transformer, using
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the features extracted by transformer to modulate the features of
CNN. MB-TaylorFormer [QZW*23] utilized Taylor expansion to
achieve linear computational complexity, significantly improving
computational efficiency. These transformer-based methods have
improved the effect of image dehazing to some extent. However,
when facing dense haze images, the features in heavy haze regions
are disturbed, making the extracted global information inaccurate,
resulting in color shift and image distortion in the results.

Diffusion-based Image Dehazing. As a powerful image gen-
eration framework, diffusion models [HJA20, FLP*23, WYYZ23,
YZTL23] have received widespread attention. IR-SDE [LGZ*23]
introduced the concept of mean regression stochastic differential
equations (SDE) [SSDK*20], enhancing image restoration qual-
ity by probabilistically modeling adaptation to different noise and
blur conditions. DehazeDDPM [YHZ*23] introduced conditional
DDPM and worked with physical modeling to solve the task of
dense haze image dehazing. GDP [FLP*23] leveraged a pre-trained
denoising diffusion probabilistic model (DDPM) [HJA20] for high-
fidelity recovery and enhancement in an unsupervised manner.
However, when processing dense haze images with large differ-
ences in haze density, these methods often lead to incomplete haze
removal due to their limited adaptability to changes in haze density.
Thus, we utilize the density information of haze images to guide
help the diffusion model removing shadows in the image.

3. Motivation

When the density of haze is dense, the fine textures, colors and con-
trast in the scene are often severely distorted, which significantly
increases the difficulty of image dehazing. Existing dehazing meth-
ods are often difficult to accurately capture and recover the content
in regions with dense haze, resulting in haze residue and texture
degradation. Thus, we need to find more advanced and accurate
haze removal algorithm to ensure that the detail and color infor-
mation in the image can be maximally recovered while the haze is
completely removed.

Based on the powerful denoising capability of the diffusion
model [LCS*21, MFZ*23, FLP*23, YL24], we consider utilizing
the diffusion model for the image dehazing. The diffusion model
is a generative model that approximates the real data distribution
by gradually adding noise (forward diffusion) and subsequently re-
moving noise (reverse diffusion). In image dehazing, this step-by-
step approximation assists in gradually removing the haze while
preserving the details and textures of the image, generating clearer
and more natural dehazing results.

Haze is composed of tiny water droplets or aerosol particles,
which form haze layers of different density at different atmospheric
depths. However, learning-based image dehazing methods tend to
ignore the variability of haze exhibited between different regions,
adopting instead an undifferentiated processing approach. When
dealing with dense and varied haze images, these methods may lead
to artifacts in the results, such as local over-enhancement or color
distortion.

To more accurately model and remove haze layers from images,
we propose a density-aware diffusion model (DADM) for image
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dehazing. DADM utilizes the density of haze in the image as guid-
ing information to help the network accurately achieve dehazing
while maintaining the realism of the result. By introducing the
density-aware mechanism, our DADM can handle various variable
haze images, especially those with dense haze.

4. Diffusion Model for Image Dehazing

In this paper, we use IR-SDE [LGZ*23] framework to implement
our DADM. For image dehazing, the haze image can be considered
as noisy data, while the clear haze-free image is the target data. By
training a diffusion model, we can learn a mapping from haze im-
ages to haze-free images. The diffusion model contains a forward
diffusion process and a reverse diffusion process. In testing, we can
take the haze image as input and gradually remove the haze through
the reverse diffusion process of the model, ultimately obtaining a
haze-free image.

Forward diffusion. The forward diffusion process gradually de-
grades a high-quality haze-free image x( into noisy data x7 by
adding noise step by step, and x; is the intermediate state at the time
stepr € {1,...,T}, as shown in Figure 2(a). In our task, x is the
original haze image I, With white Gaussian noise € ~ A (1,7»2).
Based on the IR-SDE [LGZ*23], the forward diffusion process
{xl}g is that,

dx = 0;(u—x)dt + ordw, (1)

where 0; and o; are parameters related to time step #, respectively
representing the degradation rate and the size of the disturbance
noise. w is a standard Brownian motion. u is the original haze im-
age.

According to IR-SDE, we can calculate the intermediate state x;
directly from the inital xo, which can be expressed as:

X = u+ (v — ) + /e, )
where ¢ is a standard Gaussian noise, and ¢ ~ N(0,1). o =
J38:dz, and v; = A2(1—e2%). To ensure a closed-form solution,

IR-SDE sets Gtz /6 = 222. A2 is a fixed variance, which is set to 50
in our experiments.

Based on Eq. (2), we can compute the result Xy from x; at any
time, which is necessary in the sampling process we propose later,
that is

L Xt /Vi&—p

Xo= 3

=6
where & is the predicted noise produced during the reverse diffu-
sion process.

Reverse diffusion. By simulating the reverse of the forward dif-
fusion process, we can learn a conditional reverse diffusion process
to denoise data from noisy data x7 to a less noise state x; at time
step ¢, as shown in Figure 2(a). The reverse diffusion process based
on IR-SDE is that,

dx = |6, (u—x) — 67V log py(x) | dt + ,dib, (4)

where W represents the reverse-time standard Brownian mo-
tion. Vlogp;(x) is the ground-truth score function, given by

Viogpi(x) = f\%.
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(d) Density—aware Feature Extraction Unit(DFEUnit)

(e) Haze—aware Feature Optimization Unit(HFOUnit)

Figure 2: Overview of our DADM. We recover haze-free images from haze images by adopting the IR-SDE model (a). In the reverse diffusion
process, we introduce a density-aware dehazing network (DADNet) to estimate the noise from the input image and remove the haze in the
image (b). The CDEModule (c) in DADNet is used to optimize the dark channel map and obtain the accurate haze density for the image,
helping DADNet produce high-quality results. Moreover, we design a DFFBlock to fuse effective features and learn the contextual information
for feature reconstruction, which contains a DFEUnit (d) and a HFOUnit (e).

Then, we can calculate the intermediate sampling result &,
from x;:

X1 =x—dx;

2 &)
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( \ad
Note that, we use the L1 loss between the intermediate state £, |

and the ideal state x;"_] to train the dehazing network, which is
described as:
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~ *
Ly =E[||[f—1 —x1]], (6)
where x| is the intermediate state at time step # — 1 in the reverse
diffusion process, and is calculated as,
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X1 =

1—e 20

where 8, = [/ 6,dr = 6,dr.

5. Density-aware Dehazing Network

In the reverse diffusion process of our DADM, we introduce a
density-aware dehazing network (DADNet) to estimate the noise
in the input image and recover a haze-free image from a haze im-
age (considered as a noisy state). Figure 2 (b) shows the framework
of our DADNet, which is encoder-decoder structure. We use x; and
the original haze image I,y as the input of the dehazing network,
and the output is the noise & of x;. The encoder and decoder are
three-level structures, and each level consists of L density-guided
feature fusion blocks (DFFBlocks). Each level of the decoder fuses
features from the encoder through SK-Fusion [SHQD23]. We also
introduce a cross-feature density extraction module (CDEModule)
to extract the haze density information in the image, which uses x;
and its dark channel map as input. The extracted haze density in-
formation is used as auxiliary information to help DADNet better
estimate the noise & in the image.

5.1. Cross-Feature Density Extraction Module

In haze image, the density of haze is different in different regions.
However, the current diffusion-based methods do not fully consider
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Figure 3: The haze density of the image. (b) is the dark channel
map produced by DCP. (d) is our dehazing results by using the
estimated density maps (c) .

such variation in haze density, resulting in artifacts such as color
distortion and detail degradation, as shown in Figure 1(f). To ad-
dress this problem, we first estimate the haze density in the image.
Then, our network can adaptively process regions based on the haze
density.

The dark channel map [HST10] is usually interpreted as the haze
density in the image. However, since we add noise to the image, the
noise will also presents a very low pixel value in the dark channel
map. Therefore, the dark channel value of noise areas is also very
low (as shown in Figure 3(b)), resulting in the inability to extract
accurate haze density information. Thus, the dark channel cannot
be directly used as haze density to guide the network for dehazing.

To address above issues, we introduce a cross-feature density
extraction module (CDEModule) to optimize the dark channel map
and obtain the accurate haze density for the image, as shown in
Figure 3(c). Our CDEModule is a dual-branch structure, with the
image branch dedicated to extracting features from the input im-
age, and the dark channel branch focused on extracting features
from the dark channel map. To more accurately estimate the haze
density, the two branches integrate the features of each other. In our
experiments, we use DCP algorithm [HST10] to compute the dark
channel map for x;.

Figure 2(c) illustrates the architecture of the proposed CDEMod-
ule. The image branch use x; as input, and the dark channel branch
uses D; as input. In the image branch, we first use a dynamic con-
volutional layer to extract the structural features of x;. Then, we use
a 1 x 1 convolutional layer to transform the features and enhance
their expressive power. Next, we employ a hardswish activation
function to obtain the preliminary representation By of structural
features. In the dark channel branch, due to the dark channel map
often contains small local features, we first utilize a dilated convo-
lution with a large convolution kernel to extract features. Then, we
employ a 1 X 1 convolutional layer and a GELU function to get the
preliminary representation B, of the dark channel features.

To optimize the utilization of features, we cross-utilize the fea-
tures extracted from the two branches. We concatenate By and B,.
Then, we use a 3 x 3 convolutional layer and a GELU function to
obtain the final structural features B3, and employ a 1 x 1 convolu-
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tional layer and a GELU function to obtain the final dark channel
features B4. We concatenate B3 and By, and utilize a 1 x 1 convo-
lution to reduce the dimensionality and reconstruct the final haze
density feature D for x;.

To ensure the reverse process is effective, we perform two down-
sampling operations on D and obtain haze density information at
three scales, namely Dy, D, and D3. This ensures that the subse-
quent network can fully utilize haze density features at different
scales, providing more precise and comprehensive guidance for the
dehazing process.

5.2. Density-guided Feature Fusion Block

In real scenes, the density of haze in an image is often inconsis-
tent. This inconsistency brings a great challenge in extracting lo-
cal and global information, especially for dense haze. For example,
inaccurate local information may result in artifacts with pseudo-
structures. Inaccurate global information, on the other hand, may
lead to color distortion and contrast imbalance, resulting in incon-
sistent appearance in the image.

To address the above problems, we introduce a density-guided
feature fusion block (DFFBlock) to extract and fuse features from
images. Our DFFBlock contains a density-aware feature extrac-
tion unit (DFEUnit) and a haze-aware feature optimization unit
(HFOUnit). DFEUnit aims to suppresses noise and redundant in-
formation and select the key features in the image, improving the
robustness of the model. HFOUnit is used to learn the effective
contextual information for feature reconstruction.

Density-aware Feature Extraction Unit. To effectively reduce
errors in the feature extraction caused by haze, we introduce a
density-aware feature extraction unit (DFEUnit) to extract features.
Particularly, we construct a branch that acts as an gating controller
to filter the features. Through the gating mechanism, our DFEU-
nit selectively retains key information and eliminates some useless
features like noise, thus significantly improving the effectiveness of
feature extraction.

Figure 2(d) illustrates the architecture of our DFEUnit. We first
perform batch normalization for the input feature F' and obtain fea-
ture £. Then, we perform element-wise multiplication on £ and the
extracted haze density feature D at the corresponding scale to ob-
tain a mixed feature, which is fed into a two-branch structure that
contains a feature extraction branch and a gated branch. The feature
extraction branch applies a 1 X 1 convolution, a 5 X 5 convolution
and a dilated convolution with dilation rate of 3 and a kernel size of
7 x 7 to extract features Fj. The gated branch uses a 1 x 1 convolu-
tion and a sigmoid function to obtain the corresponding gating in-
formation F,. The gating information F, represents the information
retention ratio at the corresponding position. We perform element-
wise multiplication on F| and F, to control the feature output of the
feature extraction branch. Thus, we can utilize the haze density to
focus on important information and eliminate useless features.

We concatenated the output features from the two-branch struc-
ture with F, and feed into a MLP module to get Fy;;p. The MLP
module contains a 1 x 1 convolution, a GELU activation function
and a 1 x 1 convolution. It can perform dimensionality reduction
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in the channel dimension to ensure that Fj;;p have the same size
as F. Finally, we perform element-wise addition on Fj;rp and F to
obtain the output feature F,;,;;; for DFEUnit, that is

Funit1 :MLP(Concat(Fl ><F2,F))+F, ®)
where MLP represents the MLP module.

Haze-aware Feature Optimization Unit. Haze in the image
can obscure some of the information in the scene. The region with
dense haze is a damaged area, and the color and detail information
in that region has been lost. We usually use contextual informa-
tion to recover the content of these regions. However, low density
haze only partially obscures the color and detail information of the
scene. The features in these regions easily lead to feature bias when
extracting global information, resulting in color or texture distor-
tion in the haze-free results.

To solve this problem, we introduce a haze-aware feature opti-
mization unit (HFOUnit) to extract effective contextual informa-
tion from the image. To better learn the effective features in the
image, we learn a haze-aware attention map, which represents the
haze weights of the image. With the learned haze-aware attention
map, HFOUnit can mitigate the effect of haze on image feature ex-
traction and better capture long range dependencies in images. Our
HFOUnit uses F,,;;; produced by DFEUnit as input.

Figure 2(e) illustrates the pipeline of the proposed HFOUnit.
Similar to DFEUnit, we first perform batch normalization for F;
to get feature F,;;1. Then, we perform a convolution on F,,;;; and
get feature F3. To improve the utilization of the features, we import
F3 into a channel attention unit to obtain a channel attention A,
which can help focus on channels that are more important for the
task. The channel attention unit consists of a global average pool-
ing, a 1 X 1 convolution, a ReLU activation function and a 1 x 1
convolution. On the other hand, the haze density feature D are fed
into a pixel attention unit to obtain pixel-level attention A;. The
pixel attention unit consists of a 1 x 1 convolution, a ReLU acti-
vation function and a 1 X 1 convolution. We perform element-wise
multiplication on A and A; to get the global attention Agjypes by
using a softmax function. We perform element-wise multiplication
on Agjope and F3 to obtain the haze-aware contextual features Fy,
which is concatenated with F,;;1. Next, we use the MLP module
to optimize the concatenated features for fusion and dimension re-
duction.

Finally, we perform element-wise addition on the optimized fea-
tures and F to obtain the output feature F,;» for HFOUnit, that
is

Funiry = MLP(concat(Agiopat X F3, Funir1)) + F. )

6. Test Sampling Process
6.1. Problem

During the application of diffusion model, we usually predict a se-
quence of T time steps to gradually generate and refine the target
image. During the testing process, we utilize the pre-trained model
to perform step-by-step dehazing, and this process is set to undergo
T iterations. However, considering the differences in the density
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Figure 4: Analysis of the test sampling process on four datasets.
We compare the PSNR values of the recovered Xy and 1., at each
time step, using both the original sampling method (green line) and
our improved indirect sampling strategy (blue line). The higher the
value is, the more similar Xy and 1,104 are. The red dot indicates
the optimal value. We observe that our indirect sampling process is
more stable in the second stage.

and distribution of haze in different scenes, the number of dehaz-
ing steps (or denoising steps) required to achieve complete haze
removal may vary for different images. Thus, there is a problem
when using diffusion models in the testing process: Is the final re-
sult optimal after 7 time steps of optimization?
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(b) Statistics on SOTS-outdoor
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(a) Statistics on SOTS-indoor

Figure 5: The statistics of PSNR between the recovered Xy and
L jeqr at each time step on two datasets. The orange curve is the
corresponding normal distribution curves based on their mean and
variance. the area under the orange curve fromty tot =0 is 90%
of the total area.

To delve the effectiveness of each time step in the dehazing pro-
cess, we derive the intermediate haze removal results at each time
step and evaluate them on four datasets. For a more intuitive illus-
tration, we use the PSNR value to evaluste the quality of dehazing
result at each step. As shown in Figure 4, we observe that the PSNR
value peaks at a certain intermediate time step and then shows a
gradual decreasing trend. This indicates that the dehazing results
have achieved an optimum at some intermediate time point, while
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Figure 6: Sampling process for testing. The first stage uses the gen-
eral sampling strategy of the diffusion model. However, the second
stage uses our indirect sampling strategy.

the image quality may instead degrade as the dehazing process con-
tinues. So, when using the diffusion model for dehazing, the final
result after 7' time steps may not be optimal.

The diffusion model is initially designed for image generation,
and its final output lacks explicit labels as benchmarks, thus in-
troducing a degree of randomness. However, for image dehazing
task, we expect the generated haze-free images to be as close to the
ground-truth as possible, with clear evaluation standards. Image de-
hazing task pursue the accuracy of the recovered images. After the
diffusion model achieves optimal dehazing performance, if the de-
noising process continues, the network may treat non-haze features
as noise and remove them. As the process continues, the accumula-
tion of errors caused by excessive processing may lead to a gradual
degradation of the results at a certain time step. As a result, after
reaching the optimal value, the PSNR value shows a gradual de-
creasing trend in Figure 4.

In summary, although the denoising process of the diffusion
model can improve the quality of the image, it cannot guarantee
that the final dehazing result will be optimal.

6.2. Indirect Sampling Strategy

To reduce errors caused by excessive processing, we need to opti-
mize the test sampling process, which aims to enhance the quality
and stability of the final dehazing images. From Figure 4, we can
observe that the sampling process is divided into two stages. In the
first stage, the sampling results show a gradual trend of positive op-
timization. However, in the second stage, the sampling results may
gradually decline after reaching the optimal value. To this end, we
introduce an indirect sampling strategy to improve the sampling
process in the second stage.

First, we need to determine the start time #; of the second stage.
For a better analysis, we evaluate all the sampling results at various
time steps using the PSNR values against the ground truth. Fig-
ure 5 statistics the PSNR distribution on SOTS-indoor and SOTS-
outdoor datasets. Based on the mean value 7, and the variance ¢ of
the distribution, we can plot the corresponding normal distribution
curves ¢ ~ N (tz,cz). Next, we set a criterion that the area under
the corresponding normal distribution curve from #; to t = 0 (the
shaded area in Figure 5) is 90% of the total area. We set it up this
way to ensure that the time step of the optimal value is between #; to
t = 0. Subsequently, we conduct a statistical count of #; on six test
datasets. The #; values recorded for SOTS-indoor, SOTS-outdoor,
NH-Haze, NH2-Haze, Rain100H and Rain100L are 38, 48, 50, 56,
65, and 49, respectively. In our experiments, we adopt the average
value of the six values about #; as the value of ¢, that is r; = 51.
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Figure 7: Analysis of x; on four datasets. We compare the PSNR
values of x; and 11,4, at each step, using both the original sampling
method (green line) and our improved indirect sampling strategy
(blue line). At the same time step, the higher the value is, the closer
Xt 18 to the ground-truth. The better values obtained by our strategy
indicate that the indirect sampling strategy reduces the error during
the sampling process.

We use #1 as the dividing time point. t > ¢# is the first stage, while
t <1ty is the second stage. These two stages use different sampling
methods. As shown in Figure 6, when ¢ > t;, we use the original
sampling way to obtain x; | by using Eq. (5) directly. When ¢ <1,
we first use the predicted noise € and Eq. (3) to compute the current
haze removal result ¥y. Then we use Eq. (7) to get X, based on
the computed Xj. This sampling process is shown in Algorithm 1.

To validate the effectiveness of our indirect sampling strategy,
we conduct a comparative analysis of the sampling results ob-
tained by the original sampling method and our improved sampling
method. We evaluated {x;}g acquired by both methods on four test
datasets. As shown in Figure 7, we evaluate the PSNR vaules be-
tween x; and ground-truth for each time step. From the results, we
can clearly see that x; obtained through the indirect sampling strat-
egy exhibits superior performance in terms of PSNR. This result
demonstrates that our improved indirect sampling method effec-
tively reduces errors during the sampling process.

In addition, we evaluate the dehazing results xq for each time step
based on Eq. (3), as shown in Figure 4. As can be observed that, the
original sampling method shows a decreasing trend in PSNR value
after reaching the optimal value. However, the improved sampling
method exhibits a relatively smooth trend in the later part of the
second stage, with more stable numerical values. This indicates that
our indirect sampling strategy is more robust in obtaining the final
dehazing results, improving the reliability of data sampling.

To sum up, with our indirect sampling strategy, we can not only
effectively suppress the accumulation of errors but also ensure the
accuracy of the results, delivering more realistic visual experience
for users.
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Table 1: Quantitative comparisons of state-of-the-art dehazing methods on four datasets in terms of PSNR and SSIM. "-
and the best and second-best results are highlighted in bold and underlined respectively.

"

indicates invalid,

Methods Venue& Year SOTS-indoor SOTS-outdoor NH-Haze NH-Haze2
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
DCP [HST10] TPAMI 2010 16.62 0.818 19.13 0.815 - - 11.68  0.648
DehazeNet [CXJ*16] TIP 2016 19.82  0.821 2475 0927 1662 0.524 11.77 0.621
MSBDN [DPX*20] CVPR 2020 33.67 0985 3348 0982 1923 0.706 20.11 0.800
FFA-Net [QWB*20] AAAI 2020 36.39 0989 3357 0984 1439 0452 20.00 0.823
AECR-Net [WQL*21] CVPR 2021 37.17  0.990 - - 19.88  0.717 20.68 0.828
DehazeFormer [SHQD23] CVPR 2022 40.05 0996 3495 0984 19.02 0.760 21.19 0.872
Dehamer [GYA*22] CVPR 2022 36.63 0988 35.18 0986 20.66 0.684 19.18 0.794

SCANet [CTIK23] IJCAI 2023 4040 0.996 38.01 0.995 - - - -
FocalNet [CRCK23] ICCV 2023 40.82  0.996 3771 0995 2043 0.790 20.59 0.874
C2P-Net [ZZH*23] CVPR 2023 4256 0995 36.68 0.990 - - 21.19 0.833
MB-TaylorFormer [QZW *23] ICCV 2023 42.64 0994 38.09 0991 17.24 0.608 19.33 0.675
IR-SDE [LGZ*23] ICML 2023 32.80 0.986 - - 1940 0585 19.12 0.754

DIACMPN [ZZ1.24] CVPR 2024  42.18 0997 36.56 0.993 - - - -
Original sampling PG 2024 4228 0997 3723 0.994 2040 0.775 21.04 0.879
Improved sampling PG 2024 4371 0997 38.13 0995 2094 0.809 2145 0.893

Algorithm 1 Indirect sampling method
1: Input: haze image y, denoising network &, number of implicit sam-
pling steps T', start time #;, and initial parameters ¢
2: Sample € ~ N (0,1)
3: fort =T to0do
4. if 7 <1t then

5 € :€¢(x,,,u,t)
6: Xo = «7Yr—;{716f1_” +u
—26,_ -2/ 5
7: X1 = %e‘ef (=) + =g e O (o — )
8: else )
9: Vlog pi(x) = % ~
10: Xi_1 =Xt — [et(y—x,) —G?Vlogp,(x)} dt
11: end if
12: end for

13: return x,

7. Experiments
7.1. Experiment Settings

Implementation Details. Our method is implemented in PyTorch,
which is trained on a NVIDIA GeForce RTX 3090. The model is
trained using the Lion optimizer with ; = 0.9 and B, = 0.99. We
use the learning rate adjustment strategy of cosine annealing, and
the initial learning rate is set to 4e — 5 and gradually decays to 2e —
6. The total time steps T is set to 100. Furthermore, we augment the
training data using random horizontal flipping and random rotation.

Dataset. We train our model and evaluate the performance on
ITS, OTS [LRF*18], NH-Haze and NH2-Haze datasets [AAVT21].
ITS contains 13990 image pairs and OTS contains 313950 image
pairs. Both SOTS-indoor and SOTS-outdoor datasets [LRF*18]
contain 500 image pairs, and they are synthetic datasets. NH-Haze
and NH-Haze2 datasets are real datasets with large differences in
haze density. NH-Haze dataset contains 25 image pairs and NH-
Haze contains 55 image pairs.

Metric. We utilize the Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity (SSIM) [WBSS04] between the produced im-
age and the ground-truth to assess the performance of the method.

7.2. Comparison with State-of-the-arts

Quantitative Comparison. To verify the effectiveness of our
method, we compare our method with various state-of-the-
art dehazing methods, such as DCP [HST10], DehazeNet
[CXJ*16], MSBDN [DPX*20], FFA-Net [QWB*20], AECR-Net
[WQL*21], SCANet [CTJK23], Focal-Net [CRCK23] and C2P-
Net [ZZH*23], DehazeFormer [SHQD23], Dehamer [GYA*22],
MB-TaylorFormer [QZW*23], and IR-SDE [LGZ*23]. Table 1
concludes the comparison results on four datasets. Compared with
other methods, our proposed method achieves the best performance
for all metrics on the four datasets, clearly demonstrating the effec-
tiveness of our method.

Visual Comparison. Figure 8 provides some visual dehazing
results on synthetic haze images. It can be seen, when condi-
tions in the image do not satisfy the dark channel assumption,
DCP [HST10] results in poor dehaze results, as shown in Figure
8(b). By not considering the utilization of global features, FFA-Net
[QWB*20] and AECR-Net [WQL*21] may have dehazed some
non-haze features as well, such as dust on the floor, as shown in
Figure 8(d, ). MSBDN [DPX*20] and Dehamer [GYA*22] may
appear to over-process haze in some areas, resulting in color arti-
facts, as shown in Figure 8(c, f). However, our method effectively
removes haze in the image without artifacts, as shown in Figure

8(g)-

Figure 9 provides some visual dehazing results on real images
to further verify the superiority of our method. The inaccurate at-
mospheric light may lead to color deviations in the results of DCP
[HST10], as shown in Figure 9(b). Due to the limitation of CNN,
AECR [WQL*21] may produce color distortion in regions with
dense haze, as shown in Figure 9(c). The results of DehazeFormer

© 2024 Eurographics - The European Association
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(a) Input (b) DCP (c) MSBDN (d) FFA-Net

(e) AECR-Net (f) Dehamer (g) Ours

Figure 8: Visual comparison with state-of-the-art dehazing methods on synthetic images.

[SHQD23], Dehamer [GYA*22] and MB-Taylorformer [QZW *23]
may have haze residue for dense haze images as the transformer-
based structures are unable to extract the accurate structural infor-
mation in regions with dense haze, as shown in Figure 9(d, e, g).
Focal-Net [CRCK23] often suffer from haze residual for dense haze
images, as shown in Figure 9(f). Comparatively, with the guidance
of the density of haze, our results have little artifacts and are similar
to the ground-truth images, as shown in Figure 9(i).

To verify the performance of our DADM, we retrain the diffu-
sion model IR-SDE [LGZ*23] on our training dataset. Figure 11
gives some visual comparison. From the results, we can observe
that, since IR-SDE does not take into account the density changes
of haze in the image, it leads to haze residual in the results. Com-
paratively, results produced by our method have little artifacts.

7.3. Ablation Study

Ablation of Density-aware Dehazing Network. To further eval-
uate the performance of each component in our density-aware de-
hazing network in DADM, we conduct ablation experiments on two
datasets using six variants (with or without specific module). These
seven variations are as follows:

(1) DADM : replace CDEModule with a 3 x 3 convolution.

(2) DADM, : without haze density as guidance.

(3) DADM3 : replace the dark channel map with gray level image
as the input of CDEModule.

(4) DADM, : replace DFFBlock with BatchNorm+Conv+GELU+

© 2024 Eurographics - The European Association
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Conv.

(5) DADM;5 : DFFBlock without DFEUnit.

(6) DADMg : DFFBlock without HFOUnit.

(7) DADM7 : replace the density map with the dark channel map.

We train the six variants on the ITS dataset and OTS dataset us-
ing the same training strategy and test on SOTS-indoor and SOTS-
outdoor datasets. The results are smmarized in Table 2. It can be
observed from the results that, (1) the guidance of haze density can
help improve the performance of the method and our CDEModule
is effective; (2) DFEUnit and HFOUnit are necessary to ensure the
high-quality dehazing results; (3) all the components together pro-
duces the best results. We also provide some visual results in Figure
10, from which we can observed our DADNet with all the compo-
nents achieves better performance and is more realistic in terms of
details.

Ablation of Indirect Sampling Strategy. To verify the effec-
tiveness of the proposed indirect sampling strategy, we use the in-
direct sampling strategy and the original sampling strategy to test
our DADM and IR-SDE [LGZ"23], respectively. Table 3 summa-
rizes the comparison results. From the results, we can observe that,
IR-SDE and our DADM using our indirect sampling strategy both
obtain better values that that using the original sampling strategy.
These results show that our indirect sampling strategy is useful.

In our indirect sampling strategy, we set the start time ¢; = 51
to determine the second stage. To verify the effectiveness of this
value, we apply four different values of #; to implement the indirect
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(a) Input (b) DCP (C) AECR (d) DehazeFormer (e) Dehamer (f) Focal (g) MB (h) Ours (1) GT

Figure 9: Visual comparison with state-of-the-art dehazing methods on real images.
|
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(a) Input (b) DADM,  (c) DADM, (d) DADM3 (e) DADMy  (f) DADMs (g) DADMgs  (h) DADM7 (i) Ours (j) GT
Figure 10: Visual comparison for ablation study.
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Figure 11: Visual comparison with IR-SDE.

Table 2: Quantitative results of ablation study on SOTS-indoor and
SOTS-outdoor datasets.

SOTS-indoor SOTS-outdoor

PSNR SSIM PSNR SSIM

DADM, 3993 0993 3551 0.993
DADM, 3931 0994 3513  0.992
DADM; 40.54 0994 3644 0993
DADM} 26.76 0940 28.19 0.989
DADM; 39.03 0992 3543 0.993
DADMg 28.58 0.957 30.57 0.990
DADM7 3726 0983 34.62 0.987
Our method 42.28 0997 37.23 0.994

Methods

sampling strategy. Table 2 concludes the results, from which we can
observe that our method obtain the best values when t; = 51.

Limitation. Our method can effective remove haze in the im-
age. However, when the whole image contains very dense haze,
our method has difficulty in completely removing haze from the
image due to the inability to extract effective features, as shown in
the Figure 12.

(b) Our result

(a) Input

Figure 12: Limitation.

8. Conclusion

In this paper, we propose a novel density-aware diffusion model
(DADM) for image dehazing, which utilizes the density of the haze
as guidance information to help the network reconstruct a clear im-
age. Our DADM takes the haze image as input and gradually re-
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Table 3: Quantitative comparisons using different test sampling
strategy. +Original represents the method using the original sam-
pling strategy, and +Improved represents the method using the pro-
posed indirect sampling strategy.

Rain100L Rain100H
PSNR SSIM PSNR SSIM
IR-SDE + Original 3830 0985 31.65 0.904
IR-SDE + Improved 38.59 0985 3232 0.927
Our DADM + Original ~ 3845 0.985 31.86 00911
Our DADM + Improved  38.72 0986 32.52 0.934

metheds

Table 4: Quantitative results of ablation study about t, in the test
sampling process.

SOTS-indoor SOTS-outdoor = NH-Haze NH2-Haze
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
71 43.57 0997 37.92 0995 20.34 0.777 21.13 0.882
61 43.65 0997 38.02 0.995 20.78 0.787 21.37 0.890
41 43.73 0.997 3798 0.995 20.90 0.798 21.32 0.889
31 43.57 0997 37.64 0.994 20.86 0.790 21.24 0.886
51 43.71 0997 38.13 0.995 20.94 0.809 21.45 0.893

I

move the haze through the pre-trained DADNet to get a haze-free
image. In the reverse diffusion process in DADM, we propose a
density-aware dehazing network (DADNet) to estimate the noise
in the input image and remove the noise (haze layer). To improve
the performance of the network, we also propose a density-guided
feature fusion block (DFFBlock) to learn effective contextual in-
formation for feature reconstruction. Furthermore, we introduce an
indirect sampling strategy in the test sampling process, which not
only suppress the accumulation of errors but also ensure the stabil-
ity of the results. Extensive experiments demonstrate the superior-
ity of the proposed method.

In the future, we would like to optimize our model to better adapt
to varying degrees of haze density. In addition, we will investi-
gate more efficient algorithms to reduce computational time and
resource consumption, striving for a more optimized solution.
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