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Abstract
Existing facial image shadow removal methods predominantly rely on pre-extracted facial features. However, these methods
often fail to capitalize on the full potential of these features, resorting to simplified utilization. Furthermore, they tend to overlook
the importance of low-frequency information during the extraction of prior features, which can be easily compromised by noises.
In our work, we propose a frequency-aware shadow removal network (FSRNet) for facial image shadow removal, which utilizes
the skin color and texture information in the face to help recover illumination in shadow regions. Our FSRNet uses a frequency-
domain image decomposition network to extract the low-frequency skin color map and high-frequency texture map from the
face images, and applies a color-texture guided shadow removal network to produce final shadow removal result. Concretely,
the designed fourier sparse attention block (FSABlock) can transform images from the spatial domain to the frequency domain
and help the network focus on the key information. We also introduce a skin color fusion module (CFModule) and a texture
fusion module (TFModule) to enhance the understanding and utilization of color and texture features, promoting high-quality
result without color distortion and detail blurring. Extensive experiments demonstrate the superiority of the proposed method.
The code is available at https://github.com/laoxie521/FSRNet.

CCS Concepts
• Computing methodologies → Shadow removal; Facial image; Feature fusion; Frequency-aware;

1. Introduction

Due to the variations in lighting conditions and the uniqueness of
facial structures, shadows often occur in facial images. The low
brightness of shadow regions not only reduces the visibility and
authenticity of the images, but also weakens the ability of crucial
tasks such as face recognition [ABBR20, WY22, ZZLQ16], image
restoration [DJBY20, LDR∗22, LZZ∗24], and facial image recon-
struction [JP19, DTA∗21, LZZ∗24], affecting the accuracy and ef-
fectiveness of computer vision processing. Thus, effectively remov-
ing shadows from a facial image and recovering a clear image is a
necessary and practical task.

Face image shadow removal is a complex and challenging task.
Firstly, due to variations in lighting intensity and direction, the il-
lumination in shadow regions varies significantly, increasing the
difficulty of the process. Secondly, the color and illumination in
shadow regions are significantly different from that in non-shadow
regions. Ensuring the consistency of the appearance is also a chal-
lenge. In addition, human faces are rich in natural facial features
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such as eyes, mouth, nose, and ears. The method must maintain
the accuracy and naturalness of these facial features during shadow
removal, preventing distortions and unnatural appearance.

Despite the significant progress in image shadow removal meth-
ods [WLY18, ZGZ22, GHL∗23, GWY∗23, WYW∗22a, FZG∗21,
LCC20], there are still some obvious difficulties when dealing with
face images. Human faces possess rich and intricate facial features,
which become blurred or missing under shadows. Since natural im-
age methods do not take into account these unique characteristics
of face, they tend to suffer from detail distortion when processing
face images [GWY∗23]. Additionally, the skin color and texture of
human faces are complex and delicate. These subtle variations may
be difficult to be accurately processed in natural image methods,
leading to skin color inconsistency and texture blurring, as shown
in Figure 1(c).

Several face image shadow removal methods have been pro-
posed [ZBT∗20, ZCLX23, HXZC21, LHH∗22]. Traditional meth-
ods often rely on heuristic algorithms such as illumination compen-
sation and estimation [DH19, ZZMC18, HLL∗18]. These methods
often remove shadows by adjusting lighting conditions. However,
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(a) Shadow image (b) Our result

(c) Result of [GWY∗23] (d) Result of [HXZC21]

Figure 1: Facial image shadow removal. Results of [GWY∗23] and
[HXZC21] may cause skin color inconsistency and texture blur-
ring, our method can produce more desirable result. The shadow
image is sourced from the Internet.

since the light intensity on the face does not vary linearly, they of-
ten lead to the problem of inconsistency in the appearance between
the shadow and non-shadow regions. In contrast, recent learning-
based methods have shown good performance [HXZC21]. How-
ever, these methods are weakly correlated with face features. Their
fusion of prior features is more homogeneous and does not fully
utilize the relevant features of the face, limiting its effectiveness in
guiding the image reconstruction process and resulting in unsatis-
factory results. Moreover, these methods mainly focus on spatial
domain processing, which tends to ignore some important detail
information, leading to problems such as color distortion, as shown
in Figure 1(d).

To address the above problems, we propose a frequency-aware
shadow removal network (FSRNet) to remove shadows in the fa-
cial image. Figure 2 presents the framework of our FSRNet. First,
we introduce a frequency-domain image decomposition network
(FDecomposeNet) to decompose the image into a high-frequency
part and a low-frequency part, producing a skin color map and a
texture map that are unrelated to shadows. In particular, we intro-
duce a fourier sparse attention block (FSABlock) to convert the
image from the spatial domain to the frequency domain. With the
sparse feature selection, our FSABlock can help the network re-
duce computational complexity while maintaining focus on the key
information.

Then, we propose a color-texture guided shadow removal net-
work (CTShadowNet), which utilizes the skin color and texture in-
formation in the face to help recover the illumination in the shadow
regions. Specifically, we design a skin color fusion module (CF-
Module) to fuse image features with color features, helping the

network obtain global color feature information. To get the texture
features, we introduce a texture fusion module (TFModule), which
can help the network maintain better local consistency of the image.

In summary, our main contributions are as follows:

• We propose a frequency-aware shadow removal network (FSR-
Net) for facial image shadow removal. Our FSRNet can produce
high-quality results with consistent appearance by using the skin
color map and the texture map as auxiliary information.

• We introduce a fourier sparse attention block (FSABlock) to con-
vert the image from the spatial domain to the frequency domain
and focus on the key information. We also design a skin color
fusion module (CFModule) and a texture fusion module (TF-
Module) to fuse effective color and texture features.

• Extensive experiments and evaluations verify the effectiveness
and generalization ability of our FSRNet, outperforming state-
of-the-art methods.

2. Related Work

2.1. Natural Image Shadow Removal

Natural image shadow removal methods can be mainly divided
into two categories: traditional methods [JHK18, BT06, BDS∗16,
GDH11, XXZC13, FHLD05] and deep learning-based methods
[LCC20, WLY18, CLZX21, ZGZ22, CPS20, GHL∗23]. Traditional
methods often use the physical priors to design the model,
while learning-based methods learn the mapping relationship be-
tween shadow and non-shadow images through large-scale training
datasets.

Guo et al. [GDH11] proposed a domain-based method that used
the mean shift algorithm to segment the image and the minimum
cut maximum flow algorithm to label shadow and non-shadow re-
gions. This method reconstructs the non-shadow regions based on
the differences in light intensity but struggles with complex tex-
ture details. Xiao et al. [XXZC13] developed a parameter-adaptive
shadow removal algorithm based on texture matching, which ef-
fectively removes small-scale shadows but often encounters issues
at shadow boundaries. Finlayson et al. [FHLD05] utilized gradi-
ent invariance, employing Poisson equations to construct the gradi-
ents and boundary conditions of shadow-free regions, and used the
brightness outside the shadow boundary to restore illumination in
shadowed areas. This method preserves the texture of shadowed re-
gions well and has achieved significant results in shadow removal,
though shadow boundary issues still persist.

In recent years, deep learning-based methods have achieved
remarkable progress in shadow removal [LS19, JST21, LCC20,
MXZP12, HFZ∗19, WYW∗22b, CPS20]. Wang et al. [WLY18]
proposed ST-CGAN, a stacked conditional generative adversarial
network framework for joint shadow detection and removal, us-
ing a discriminator to identify the relationship between shadow
detection and removal. Fu et al. [FZG∗21] introduced an over-
exposed fusion shadow removal method, which cleverly combines
over-exposed images and original shadow images through a learn-
able pixel weighting map. Mask-ShadowGAN [HJFH19] rede-
fined cycle-consistency constraints to perform shadow removal on
unpaired data. To fully utilize datasets, DHAN [CPS20] synthe-
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Figure 2: The framework of the proposed FSRNet. With the proposed fourier sparse attention block (FSABlock), we first use the FDecom-
poseNet to decompose the image into a high-frequency part and a low-frequency part, producing a skin color map and a texture map. Then,
we use the CTShadowNet to remove shadows in the image. CFModule and TFModule are used to fuse image features with color and texture
features, help the network produce high-quality shadow removal results.

sized pseudo-shadow images and learned boundary-free pseudo-
shadow images through a dual hierarchical aggregation network to
reconstruct shadow-free images. SG-ShadowNet [WYW∗22a] in-
vestigated the importance of normalization, learning style repre-
sentations of non-shadow regions to harmonize shadow and non-
shadow parts. Shadow-Former [GHL∗23] introduced shadow in-
teraction modules and attention mechanisms to integrate contex-
tual information between shadow and non-shadow areas. Shad-
owDiffusion [GWY∗23] used a diffusion model that learns the
noise distribution by adding noise and then denoising, guiding
the restoration of shadowed images with a refined shadow mask.
DMTN [LWF∗23] designed a single-stage decoupled multi-task
network that jointly guides the target image through various tasks.

Although these methods are effective for shadow removal in nat-
ural images, they do not generalize well to shadow removal in face
images due to the different characteristics between natural images
and face images.

2.2. Facial Image Shadow Removal

Most existing facial image shadow removal methods use heuristic
approaches to capture features of facial images. Due to the unique
structure of faces, these algorithms can leverage facial characteris-
tics to guide the image restoration process. Zhang [ZBT∗20] em-
ployed a method of facial symmetry to guide the restoration of fa-
cial shadows. He et al. [HXZC21] proposed a progressive optimiza-
tion strategy, using a pre-trained model to generate a facial shadow
mask that guides the reconstruction of shadow-free images. How-
ever, this method is unstable in the shadow removal process. Zhang
et al. [ZCLX23] employed a two-stage network to remove shadows
by utilizing facial symmetry, generating facial optical flow to ob-
tain a coarse shadow-free image. They then used a graph convolu-
tional encoder to produce the final shadow-free image, which inte-
grates with a feature modulation module. Liu et al. [LHH∗22] used

grayscale shadow removal and recoloring techniques to remove fa-
cial shadows. These methods do not adequately address skin color
consistency and detail preservation. To solve these problems, we
extract skin color and texture features from the face to guide the
image restoration process, resulting in more realistic images.

3. Methodology

In this paper, we propose a frequency-aware shadow removal net-
work (FSRNet) to remove shadows in the facial image. Our FS-
RNet utilizes the skin color and texture information in the face
to help recover the illumination in shadow regions of the face.
Figure 2 presents the framework of our FSRNet, which consists
of a frequency-domain image decomposition network (FDecom-
poseNet) and a color-texture guided shadow removal network (CT-
ShadowNet). We first use FDecomposeNet to decompose the image
into a high-frequency part (texture map) and a low-frequency part
(skin color map). Then, under the guidance of the skin color map
and the texture map, our CTShadowNet removes shadows in the
facial image.

Note that, to avoid the noise and interference introduced by
the background in the image, we only process the face part in
our method. We use the face segmentation pre-trained model of
Chen [CZL∗22] to get a portrait mask (Figure 3(b)) for the orig-
inal shadow image. We separate the portrait from the background
through the portrait mask to get the input image containing only the
person (Figure 3(c)).

3.1. Frequency-domain Image Decomposition Network

Existing methods for face image shadow removal mainly focus on
spatial domain processing, but these methods often tend to over-
look some important detail information, leading to issues such as
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(a) (b) (c) (d) (e)

Figure 3: Skin color map and texture map. (a) is the original
shadow images. (b) is portrait masks. (c) is portrait shadow im-
ages. (d) is the skin color map and (e) is the texture map. The im-
ages are sourced from FSTD [ZCLX23].

color distortion and detail blurring. To obtain better color and tex-
ture information, we design a frequency-domain image decom-
position network (FDecomposeNet) to extract low-frequency and
high-frequency information from the image, resulting in a shadow-
free facial skin color map (Figure 3(d)) and a shadow-free tex-
ture map (Figure 3(e)). During training, we apply the Laplacian
filter [APH∗14] to the shadow-free ground truth in the training
dataset to compute a texture map as supervised data for the high-
frequency part. For the low-frequency part, we extract a face skin
color map from the shadow-free ground truth to serve as supervised
data. Specifically, we first use the YCrCb color domain of the face
image to extract color information. Then, we employ a smoothing
operation and a blur operation to weaken facial details to get a face
skin color map as the label.

In FDecomposeNet, we use a frequency-domain encoder to ex-
tract the image features. Next, we apply two frequency-domain
decoders to extract the skin color map and the texture map re-
spectively. To better accomplish the decomposition, we propose
a fourier sparse attention block (FSABlock) to transform images
from the spatial domain to the frequency domain. The frequency-
domain encoder contains a 3 × 3 convolution and three FS-
ABlock+DownSample. The frequency-domain decoder contains a
FSABlock+UpSample, two FSABlock+FSABlock+UpSample and
a FSABlock+FSABlock+ConvBlock. The ConvBlock applies a
group normalization, a swish activation, Dropout, and a convolu-
tion to restore the number of feature channels, ensuring the con-
sistency of input and output channels. Between the encoder and
decoders, we construct a frequency-domain decomposition block
(FDBlock) to perform feature division on frequency domain.

Fourier Sparse Attention Block. Traditional attention mecha-
nisms mostly utilize dense matrices to model the dependency be-
tween different positions in image processing. This strategy leads
to the inclusion of some unnecessary information in the computa-
tion process, which increases the computational complexity. In ad-
dition, traditional attention mechanisms are relatively insensitive to
images in the frequency domain, often tending to ignore important
low-frequency information in images.

To overcome these limitations, we introduce a fourier sparse at-
tention block (FSABlock). It converts the image from the spatial

Figure 4: The architecture of our fourier sparse attention block
(FSABlock).

domain to the frequency domain and extracts global features of the
image. In our FSABlock, we use sparse matrices to replace tradi-
tional dense matrices. In this way, we are able to selectively focus
on the key information in the image while ignoring the unimportant
or redundant parts. This greatly reduces computational complexity
while maintaining focus on the key information.

Figure 4 illustrates the architecture of the proposed FSABlock.
We first normalize the input features F1 to get features F2. Then,
we use a 1× 1 convolution to adjust the number of feature chan-
nels and a 3× 3 convolution is employed to extract spatial context
features F3. We split features F3 into patches and reshape them to
obtain query Q, key K, and value V , respectively. We perform fast
fourier transform (FFT) on Q and K, and get FQ and FK respec-
tively. We perform element-wise product multiply on FQ and FK to
get an attention matrix Fspacial . Next, we use an inverse fast fourier
transform (IFFT) to obtain the attention matrix A based on the fre-
quency domain.

To reduce the computational effort, we use the Top-k sparsity
matrix [WWW∗22] to preserve the important components of atten-
tion and remove the useless information. Here, k is an adjustable
parameter that dynamically controls the size of sparsity. We can re-
place the indicator that satisfies less than k to make the dense matrix
into a sparse matrix. We utilize a scatter operation to fill the mask
with the pixel values in the matrix that satisfy the condition. Next,
we apply softmax to normalize the sparse matrix to obtain the at-
tention weight FW . We perform element-wise product multiply on
V and FW to get the sparse context features F4. Finally, after a re-
shape operation, we utilize a 1× 1 convolution to obtain the final
sparse attention features Fsparse.

Frequency-domain Decomposition Block. We introduce a
frequency-domain decomposition block (FDBlock) to perform fea-
ture division at the bottleneck layer on the features. Figure 5 shows
the architecture of FDBlock.

We first use a LayerNormalization layer to normalize the input
feature D and enhance the features. Then, we employ a FSABlock
to filter out unnecessary features and noise. The obtained features
are transformed from the spatial domain to the frequency domain
using a fast fourier transform (FFT). Next, we use a low-pass filter
to extract low-frequency features and a high-pass filter to extract
high-frequency features. The extracted low-frequency and high-
frequency features are subsequently transformed to the spatial do-
main using the inverse fast fourier transform (IFFT). Finally, we use
a 3× 3 convolution layer and a Relu activation function to further

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Zhang Ling & Xie Wenyang & Xiao Chunxia / Frequency-Aware Facial Image Shadow Removal through Skin Color and Texture Learning 5 of 11

Figure 5: The structure of our frequency-domain decomposition
block (FDBlock).

enhance the feature expression. The decomposed high-frequency
and low-frequency features are fed into the two frequency-domain
decoders, respectively.

3.2. Color-Texture Guided Shadow Removal Network

Face images usually have complex texture and skin color informa-
tion, which are crucial for image processing tasks. However, cur-
rent shadow removal methods for face images often suffer from
challenges such as color distortion and detail blurring. As afore-
mentioned, the low-frequency skin color information contains the
brightness and color distribution of the image, while the high-
frequency texture information captures and preserves the texture
structure of the face. Therefore, we propose a color-texture guided
shadow removal network (CTShadowNet) that utilizes the ex-
tracted skin tone map and texture map as auxiliary information. Our
CTShadowNet is an encoder-decoder network with a discriminator.
We employ Markov discriminator [IZZE17] as our discriminator.

Due to insufficient consideration of the correlation between fea-
tures, simply concatenating features may obscure or lose some use-
ful features. Additionally, direct concatenating features may in-
crease the number of network parameters, thus elevating the risk of
overfitting. Thus, we design a skin color fusion module (CFMod-
ule) and a texture fusion module (TFModule) that aim to better fuse
image features with skin color and texture features. The fused fea-
tures can aid the network in recovering illumination in the shadow
regions of the face while preserving the natural appearance and tex-
ture details.

Our CTShadowNet contains three steps, as shown in Figure 2.
First, we utilize three frequency-domain encoders to extract the
frequency-domain features of the skin color map, texture map,
and the input image separately. We denote them as Fcolor, Ftexture
and Fimage. Then, we fuse the image features with texture fea-
tures and color features using TFModule and CFModule. After-
ward, the fused features along with the original image features
are fed into a color-texture fusion decoder for feature decoding
and reconstruction of a shadow-free face image. The color-texture
fusion decoder contains three FSABlock+UpSample and a FS-
ABlock+ConvBlock.

The fused features from CFModule are concatenated with fea-
tures from the first FSABlock in the color-texture fusion decoder.
The output features from TFModule at each scale are concatenated

with the features from the subsequent three FSABlocks, respec-
tively, according to their corresponding scales. This concatenation
strategy ensures that features from different scales and levels of
abstraction are properly aligned and combined, allowing the net-
work to utilize both local and global contextual information. The
concatenated features are then fed into further layers for process-
ing and refinement, ultimately contributing to the generation of a
high-quality shadow-free face image.

Figure 6: The structure of our skin color fusion module (CFMod-
ule).

Skin Color Fusion Module. The skin color map serves as a
crucial component in the network, providing global color feature
information of the image. Through the skin color fusion module
(CFModule), we can precisely adjust the colors of the shadow re-
gions based on the color information from the surrounding areas
of the face, making the generated image appear more natural and
realistic.

Figure 6 shows the architecture of the proposed CFModule. First,
we use BatchNorm to normalize color features Fcolor and image
features Fimage separately. Then, we use a 1×1 convolution, a Relu
activation function, and a 3× 3 deep convolution to obtain struc-
tural feature representations of the two normalized features, de-
noted as Scolor and Simage. Next, we perform a convolution on Scolor
to obtain features S1 and S2. Similarly, we perform a convolution
on Simage to obtain features S3 and S4. We use the AdaIN module to
transfer the color of feature S1 to S3 and the color of feature S2 to
S4, obtaining the transferred features Strans f er1 and Strans f er2. Sub-
sequently, we perform element-wise product multiply on Strans f er1
and S3 to get feature S5 and on Strans f er2 and S4 to get feature S6.
Both S5 and S6 are further enhanced for expressiveness through a
3x3 convolution and a Swish activation function. Finally, we in-
tegrate the enhanced two features using a concatenation operation
and utilize a 1×1 convolution layer to restore the original number
of channels, outputting the final color fused features Fcolor.

To further enhance the feature representation capabilities of the
network, we specifically integrate the color fused features Fcolor at
the lower levels of the color-texture fusion decoder. Features at this
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level tend to be global and abstract. By introducing color features
at this level, our CTShadowNet can more effectively capture global
features related to skin color, significantly improving its resilience
to color variations and potential noise. This design not only im-
proves the accuracy of the model in skin color processing but also
enhances the overall quality and naturalness of the result.

Texture Fusion Module. During the process of image restora-
tion, ordinary upsampling methods often lead to the loss of image
details. While skip connections can preserve contextual informa-
tion to a certain extent, they still fall short of restoring the texture
of shadow regions. Therefore, we propose a texture fusion module
(TFModule) to combine image features and texture features more
perfectly. Effective texture features can help the network to recover
the texture information more accurately while removing shadows
in the image.

Figure 7: The structure of our texture fusion module (TFModule).

Figure 7 illustrates the structure of the proposed TFModule.
First, we employ Layer Normalization (LayerNorm) to normal-
ize the texture features Ftexture and the image features Fimage, en-
suring stability during data propagation. Subsequently, we utilize
PatchEmbedding to divide these two features into multiple small
patches and convert them into lower-dimensional vector represen-
tations, reducing computational costs while capturing local infor-
mation. We input the two sets of feature vectors into a channel at-
tention unit to obtain their channel attention weights, which are
Atexture and Aimage. These attention weights can help the model fo-
cus on channels that contribute more to the task. The channel atten-
tion unit consists of a global average pooling, a 1× 1 convolution,
a Relu activation function, and a 1×1 convolution.

Next, we utilize the sigmoid activation function to convert
Atexture and Aimage into probability distributions Ptexture and Pimage.
We perform element-wise multiplication on Fimage and Atexture to
obtain the fusion feature Ff use1. Performing the same operation on
Ftexture and Aimage obtains feature Ff use2. Following that, we em-
ploy a 3 × 3 convolution and a Relu activation function both on
Ff use1 and Ff use2 to extract spatial features, capturing local infor-
mation in the images. Finally, we concatenate the two spatial fea-
tures and use a 1 × 1 convolution to restore the original number
of channels, outputting the final texture-fused feature. This fused
feature contain rich information from both the input image and the
texture, emphasizing key channels and spatial information for the
shadow removal task.

To better capture image details and structures, we introduce tex-
ture features into the later layers of the color-texture fusion decoder.
These features are rich in information about the structures and de-
tails of the image, enriching the feature representation of the de-
coder and helping the network maintain better local consistency of
the image. Thus, we can effectively address issues such as the loss
of detail and texture distortion that may occur during shadow re-
moval.

3.3. Loss Function

The loss function we utilize for network optimization consist of
four components: frequency-domain reconstruction loss Lfrequency,
appearance consistency loss Lapperance, structural consistency loss
Lstructure and adversarial loss Ladv. The total loss function is ex-
pressed as:

Lloss = Lfrequency +λ1Lapperance +λ2Lstructure +λ3Ladv, (1)

where λ1, λ2 and λ3 are the weight parameters.

Frequency-domain reconstruction loss is used to constrain
FDecomposeNet to generate desirable facial skin color map Icolor
and texture map Itexture, which is described as:

Lfrequency = ∥Icolor − Igt
color∥+∥Itexture − Igt

texture∥1, (2)

where Igt
color is the supervised data for the high-frequency part, and

Igt
texture is the supervised data for the low-frequency part.

Appearance consistency loss is used to ensure the authenticity
of the shadow removal result Ifree generated by FSRNet. We use
the L1 distance between Ifree and shadow-free ground truth Igt to
evaluate the data loss, that is,

Lapperance = ∥Ifree − Igt∥1, (3)

Structural consistency loss is used to evaluate the structural
loss of the shadow removal result Ifree and the shadow-free ground
truth Igt, which is calculated as,

Lstructure = ∥V GG(Ifree)−V GG(Igt)∥2
2, (4)

where V GG() is the feature extractor of the pre-trained VGG19
model.

Adversarial loss is used for the discriminator to determine
whether the generated result is real or fake, which is calculated as,

Ladv = E(I,Ifree,Igt) [log(D(Igt))+ log(1−D(I))] , (5)

where D is the discriminator, and I is the shadow image.

4. Experiments

4.1. Implementation Detail

Our network is implemented using Pytorch, which is trained on
NVIDIA GeForce RTX3090. Our FSRNet is trained using the
Adam optimizer with 300 epochs. The decay rate beta is set to (0.5,
0.999). The initial learning rate is set to 0.0003. In our experiments,
the weight parameters λ1, λ2 and λ3 are set to 5, 1 and 0.01, respec-
tively.
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Figure 8: Visual comparison among state-of-the-art shadow removal results: (a) input images, (b) Auto-Exposure Fusion [FZG∗21], (c)
Spa-Former [ZGZ22], (d) Style-Guided [WYW∗22a], (e) DMTN-Net [LWF∗23], (f) Shadow-Former [GHL∗23], (g) He et al. [HXZC21], (h)
Liu et al. [LHH∗22], (i) Zhang et al. [ZCLX23], (j) our FSRNet, (k) ground truth images. The images are sourced from FSTD [ZCLX23] and
Zhang [ZBT∗20].

Table 1: Quantitative comparisons of shadow removal on FSTD [ZCLX23] and Zhang [ZBT∗20] datasets in terms of RMSE, PSNR, and
SSIM. All the learning-based methods are trained on FSD+ dataset. ↑ means the larger the better while ↓ means the smaller the better.

Methods Venue/Year
FSTD Zhang

PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓
Fu et al. [FZG∗21] CVPR/2021 31.682 0.965 8.743 19.385 0.802 30.128

Spa-Former [ZGZ22] CVPR/2021 29.631 0.954 11.849 26.710 0.892 14.317
SG-ShadowNet [WYW∗22a] ECCV/2022 32.869 0.973 7.683 23.458 0.872 21.472

DMTN-Net [LWF∗23] TMM/2023 32.054 0.967 8.942 26.973 0.894 15.457
Shadow-Former [GHL∗23] AAAI/2023 36.475 0.972 6.812 30.279 0.904 11.678

ShadowDiffusion [GWY∗23] CVPR/2023 37.475 0.976 5.595 32.367 0.918 10.032
Zhang [ZBT∗20] SIGGRAPH/2020 26.386 0.894 24.728 23.816 0.782 29.834

He et al. [HXZC21] CVPR/2021 24.541 0.931 18.545 21.870 0.816 28.438
Liu et al. [LHH∗22] ECCV/2022 22.652 0.842 27.139 19.427 0.742 31.289

Zhang et al. [ZCLX23] PG/2023 36.423 0.982 5.389 29.775 0.931 9.901
our FSRNet PG/2024 38.024 0.984 4.698 34.356 0.936 7.360

4.2. Comparison with State-of-the-arts

Dataset. We use the dataset FSD+ as the training data for
our method, which contains two parts. One is the FSD dataset
[ZCLX23], which consists of 2,800 pairs of face shadow and
shadow-free images. The other is a dataset constructed by Zhang et
al. [ZCLX23], including 1,612 pairs of face shadow and shadow-
free images. We use two test datasets to evaluate our FSRNet. One
is FSTD [ZCLX23], containing 964 pairs of face images. The other
test dataset is proposed by Zhang [ZBT∗20], which contains 100
pairs of images.

Metrics. We use the root mean square error (RMSE), the peak
signal-to-noise ratio (PSNR) and the structural similarity index
measure (SSIM) between the shadow removal result and the ground

truth shadow-free image to evaluate the performance of our FSR-
Net.

Quantitative Comparison. To validate the effectiveness of our
FSRNet, we compare our results with state-of-the-art shadow
removal methods, including six natural shadow removal meth-
ods [FZG∗21, ZGZ22, WYW∗22a, LWF∗23, GHL∗23, GWY∗23]
and four facial shadow removal methods [ZBT∗20, HXZC21,
LHH∗22, ZCLX23]. For a fair comparison, we train all learning-
based methods on the FSD+ dataset using the same hardware. Ta-
ble 1 concludes the comparison results using three metrics. From
the table, we can observe that our method achieves the best val-
ues for all metrics among all comparison methods, confirming the
effectiveness of our approach.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 9: Visual comparison among state-of-the-art shadow removal results: (a) input images,(b) Auto-Exposure Fusion [FZG∗21], (c)
Spa-Former [ZGZ22], (d) Style-Guided [WYW∗22a], (e) DMTN-Net [LWF∗23], (f) Shadow-Former [GHL∗23], (g) He et al. [HXZC21], (h)
Zhang et al. [ZCLX23], (i) our FSRNet. The images are sourced from Zhang [ZBT∗20].

(a) Input images (b) DDPM (c) Shadow Diffusion (d) Our results

Figure 10: Compared with the diffusion model. (b) and (c) are
shadow removal results produced by DDPM [LDR∗22], ShadowD-
iffuion [GWY∗23], (d) is our results. Row 1 is from the FSTD
[ZCLX23], and Rows 2 and 3 are from the Internet.

Visual Comparison. To demonstrate the superiority of our
method, we provide some visual results of facial image shadow
removal, as shown in Figure 8. It can be observed that, Fu et
al. [FZG∗21] exhibit overexposure of the face, resulting in color
distortion, as shown in Figure 8(b). Spa-Former [ZGZ22] fails to
remove all shadows for complex facial images, as shown in Figure
8(c). SG-ShadowNet [WYW∗22a] is capable of removing shad-

(a) Input images (b) Our results (c) Input images (d) Our results

Figure 11: Comparison of face images in complex scenes. The
input images are sourced from the Internet.

ows from faces but introduces artifacts around shadow boundaries,
as shown in Figure 8(d). DMTN-Net [LWF∗23] suffers from the
loss of details in the results, as shown in Figure 8(e). Shadow-
Former [GHL∗23] can get artifacts with shadow artifacts, as shown
in Figure 8(f). He et al. [HXZC21] are insensitive to environmental
lighting, resulting in significant differences in skin color, as shown
in Figure 8(g). Liu et al. [LHH∗22] struggle with complex shadows
and exhibit unstable performance, as shown in Figure 8(h). Zhang
et al. [ZCLX23] cannot preserve facial skin color and texture in-
formation well, as shown in Figure 8(i). In contrast, our FSRNet
effectively removes shadows in the images, maintaining consistent
appearance without color distortion and loss of detail, as shown in
Figure 8(j). Our results are similar to the ground truth images.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 12: Visual comparison for ablation study: (a) input images, (b) FSRNet1, (c) FSRNet2, (d) FSRNet3, (e) FSRNet4, (f) FSRNet5, (g)
FSRNet6, (h) FSRNet7, (i) our FSRNet and (j) ground truth images. The images are sourced from Zhang [ZBT∗20].

To further validate the robustness and generalization ability of
our network in image shadow removal, Figure 9 presents some
shadow removal results on facial images from real-world scenarios.
These include challenging cases such as facial skin tone variations,
inconsistent lighting, and heavy shadows on the face. Apparently,
our results look more realistic and natural, ensuring sufficient facial
details. This demonstrates the good robustness and generalization
ability of our method.

To further demonstrate the superiority of our method, we com-
pared our method with two methods based on diffusion model.
Figure 10 provides the shadow removal results. It can be seen,
DDPM [LDR∗22] fails to preserve the details of the image effec-
tively, as shown in Figure 10(b). ShadowDiffusion [GWY∗23] ex-
hibits noticeable differences in skin tones, as shown in Figure 10(c).
Comparatively, Our method effectively removes shadows in the im-
age and achieves a more natural and realistic appearance.

Moreover, our method is capable of effectively handling facial
shadow areas in complex scenes, as shown in Figure 11. Our excel-
lent visual results demonstrate the robustness of our method.

User study. We conduct a user study to evaluate the visual per-
formance of our method and some state-of-the-art shadow removal
methods. We have prepared 120 sets of shadow removal images.
Each group includes eight different shadow removal results pro-
duced by our FSRNet, Fu [FZG∗21], Spa-Former [ZGZ22], SG-
ShadowNet [WYW∗22a], DMTN-Net [LWF∗23], Shadow-Former
[GHL∗23], He et al. [HXZC21] and Liu et al. [LHH∗22]. We ran-
domly select 120 volunteers. For each volunteer, we randomly pro-
vide them with 20 image sets. Volunteers are asked to choose the
best shadow-free image for each group. Statistics of all results,
we found that 19.12% of the shadow removal images generated
by FSRNet are selected as the best shadow-free images, while
10.66%, 10.12%, 11.14%, 13.65%, 12.62%, 10.64% and 12.05%
of the results are selected by Fu [FZG∗21], Spa-Former [ZGZ22],
SG-ShadowNet [WYW∗22a], DMTN-Net [LWF∗23], Shadow-
Former [GHL∗23], He et al. [HXZC21] and Liu et al. [LHH∗22].
Compared to other methods, our method gets the best result, which

demonstrates that the shadow removal images obtained by our
method are more visually satisfactory.

Table 2: Quantitative results of ablation study on FSTD [ZCLX23]
and Zhang [ZBT∗20] datasets using PSNR, SSIM, and RMSE.

Methods
FSTD Zhang

PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓
FSRNet1 29.420 0.956 11.009 26.505 0.867 23.710
FSRNet2 32.704 0.965 7.765 23.162 0.883 20.947
FSRNet3 36.475 0.968 6.812 30.279 0.894 15.678
FSRNet4 35.472 0.976 5.242 22.973 0.904 11.457
FSRNet5 36.683 0.970 6.025 25.317 0.915 10.726
FSRNet6 37.430 0.980 5.036 32.480 0.925 8.059
FSRNet7 37.683 0.978 5.025 32.317 0.918 9.726
FSRNet 38.024 0.984 4.698 34.356 0.936 7.360

4.3. Ablation Study

To evaluate the performance of different components used in FSR-
Net, we perform ablation experiments by disabling or modifying a
specific component. We design seven variants:
(1) FSRNet1: Replace FSABlock with the vanilla self-attention
model [VSP∗17];
(2) FSRNet2: FSRNet without both skin color and texture informa-
tion as the auxiliary information;
(3) FSRNet3: FSRNet without skin color information as the auxil-
iary information;
(4) FSRNet4: FSRNet without texture information as the auxiliary
information;
(5) FSRNet5: FSRNet without TFModule and CFModule, texture
and color features from the encoders are directly connected to the
color-texture fusion decoder;
(6) FSRNet6: FSRNet without TFModule, and texture features
from the encoder are directly connected to the color-texture fusion
decoder;
(7) FSRNet7: FSRNet without CFModule, and color features from
the encoder are directly connected to the color-texture fusion de-
coder.
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We train seven variants on FSD+ and evaluate the results on two
test datasets. Table 2 summarizes the quantitative results. As can be
seen from the table, (1) all the components designed in our method
can improve the performance of our FSRNet; (2) skin color fu-
sion module and texture fusion module can help improve the per-
formance of the method; (3) our fourier sparse attention block is
effective. We also provide some visualization results in Figure 12,
from which we can find that our FSRNet with all components pro-
duces more realistic shadow removal results.

4.4. Limitation

Our FSRNet can effectively remove shadows in face images. How-
ever, when the shadow is very dark, some high-frequency infor-
mation on the face may be lost, such as beards and hair. Skin color
information cannot be fully utilized, resulting in blurred details and
poor appearance, as shown in Figure 13.

(a) Input image (b) Result

Figure 13: Limitation. The image is sourced from the Internet.

5. Conclusion

In this paper, we propose a frequency-aware shadow removal net-
work (FSRNet) for facial image shadow removal, which con-
tains a frequency-domain image decomposition network (FDe-
composeNet) and a color-texture guided shadow removal network
(CTShadowNet). We first use FDecomposeNet to extract the low-
frequency skin color map and high-frequency texture map from the
face images. Then, with the color and texture features as auxiliary
information, CTShadowNet can produce the final shadow removal
result. Concretely, the designed FSABlock can transform images
from the spatial domain to the frequency domain, helping the net-
work focus on the key information. CTShadowNet uses CFModule
and TFModule to fuse image features with skin color and texture
features, promoting high-quality results without color distortion de-
tail blurring. The extensive experiments validate the superiority of
our FSRNet.
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