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Figure 1: MegaSurf is designed to reconstruct large-scale scenes from extensive images captured by drones. It has both the
robustness of the stereo matching and the high-fidelity details of the rendering-based reconstruction methods.

Abstract
We present MegaSurf, a Neural Surface Reconstruction (NSR) frame-
work to reconstruct 3D models of large scenes from aerial im-
ages. Many methods utilize geometry cues to overcome the shape-
radiance ambiguity, which would produce large geometric errors. In
addition, directly using inevitable imprecise geometric cues would
lead to degradation in the reconstruction results, especially on large-
scale scenes. To address this phenomenon, we propose a Learnable
Geometric Guider (LG Guider) to learn a sampling field from reli-
able geometric cues. The LG Guider decides which position should
fit the input radiance and can be continuously refined by rendering
loss. Our MegaSurf uses a Divide-and-Conquer training strategy
to address the synchronization issue between the Guider and the
lagging NSR’s radiance field. This strategy enables the Guider to
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transmit the information it carried to the radiance field without
being disrupted by the gradients back-propagated from the lagging
rendering loss at the early stage of training. Furthermore, we pro-
pose a Fast PatchMatchMVSmodule to derive the geometric cues in
the planer regions that help overcome ambiguity. Experiments on
several aerial datasets show that MegaSurf can overcome ambiguity
while preserving high-fidelity details. Compared to SOTA methods,
MegaSurf achieves superior reconstruction accuracy of large scenes
and boosts the acquisition of geometric cues more than four times.
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1 Introduction
Recently, Neural Surface Reconstruction (NSR), derived from neural
radiance field (NeRF)[21, 30, 44, 50], not only excels in high-fidelity
novel view synthesis, but also enables accurate geometric acquisi-
tion. Accurate 3D surface model is an essential and basic element
to create immersive experiences in the game engines and VR ex-
periences. Although NSR has achieved good results in small-scale
scenes, there is limited research on its effectiveness in large-scale
scenes. Besides, there are many works [11, 28, 29, 36, 39, 41] on the
novel view synthesis of large scenes,but little research on the 3D re-
construction directly using images without the aid of LiDAR [6, 23].
Utilizing drones for image acquisition and employing NSR technol-
ogy can efficiently digitize and vividly recreate cities and historical
sites for preservation, while also supporting wide-spreading of
AR/VR applications.

However, NSR often encounters geometric errors due to shape-
radiance ambiguity, as NSR uses rendering loss to optimize geome-
tries for SDF network [3] implicitly. This problem becomes worse
when NSR needs to render aerial images captured for large and
complex scenes. Therefore, existing works [3, 34, 49] introduce
geometric cues from multi-view stereo into NSR, imposing addi-
tional geometric constraints on the rendering, thereby improving
the accuracy of the NSR methods.

Methods likeMonoSDF [34, 49] add a geometric loss by rendering
depth from network to compare with the geometric cues provided
by depth estimation. Some other methods like GeoNeuS [3, 31] use
a multiview photometric consistency loss derived from the implicit
surface as the geometric loss without explicitly deriving geometries
from MVS. However, geometric errors and noise persist in the
radiance field due to strong constraints caused by geometry loss.
This prevents the implicit surface from fitting the real geometry
accurately and leads to the degradation of details. NerfingMVS [37]
employs confidence of geometric cues to define the sampling range
around the prior to deal with noisy geometric cues. However, the
confidence of geometric cues is difficult to assess, and manually set
the threshold to the sampling ranges is too rigid to be applied to
different and variable datasets.

We propose a Learnable Geometric Guider (LG Guider) which
firstly distill the geometric cues to the sampling network to avoid
sampling on the ambiguous regions, and also can be continuously
refined by rendering to overcome the missing details due to noises
of geometric cues. If the LG Guider is used to guide an unoptimized
radiance field directly, the learned geometric information carried
by the Guider will be damaged and causing ambiguity again (Fig. 3).
Therefore, we propose the Divide-and-Conquer training strategy
as shown in Fig. 2. Firstly, we train the LG Guider with geome-
try net with geometry cues, to distill the prior geometric cues to
prior knowledge of sampling and SDF field. Then we freeze the
LG Guider, and train render net. The purpose is to use the distilled
sampling retrain the radiance field falling into ambiguous regions.
Finally we train the full network, to refine the sampling and geom-
etry by rendering loss for recovering geometric details from noisy
geometric cues. To be noticed, geometry cues is only introduced
in the first stage to avoid its continuous noise effects to the final
results.

In additional, we find that ambiguities in NSR often occur in the
large planar geometries in the region of low texture and shadows,
while the complex geometries often easier to be reconstructed due
to their rich and distinct color. We propose a fast PatchMatch MVS
module to efficiently reconstruct the large planar geometries. A
novel local propagation strategy is designed which progressively
propagate geometries with similar plane with the SFM points, with
only one step of PatchMatch operation performed per pixel to speed
up the MVS process.

In summary, our main contributions are the following:
• We introduce a Learnable Geometric Guider to distill the geo-

metric cues to overcome shape-radiance ambiguities and can be
continuously refined by rendering to recover details from geometric
noises.

•We propose a Divide-and-Conquer training strategy to improve
the guidance of learning of shape and radiance field using the
Learnable Geometric Guider.

• We present a fast MVS module to efficiently obtain high confi-
dence planar geometric priors over 4× improvement in speed where
large shape-radiance ambiguities often occur.

• On the several aerial photography datasets, our algorithm
achieved the best results of quantitative and qualitative results. To
our knowledge, we are the first to extend accurate NSR to large
scale aerial scene.

2 Related Work
Multiview stereo matching.Multiview Stereo (MVS) [26] aims
to recover 3D geometric model of the real scene from input images.
The key idea of image based multiview reconstruction is photo-
consistency matching [4, 15, 25, 43]. However, the performance
of local photo-consistency matching is easily reduced in regions
with low textures, shadows, and non-Lambertian materials. There-
fore, several global matching aggregation methods are applied to
improve the quality, including semi-global optimization [7], Patch-
Match [25], and 3D convolution regularization [45]. Even though
the learning-based MVS methods [5, 10, 14, 17, 20, 40, 45, 52] show
their advantages of reconstruction in difficult regions, their appli-
cation on large-scale aerial datasets is limited due to the lack of
various 3D training datasets, which are often expensive to acquire.
Patchmatch-based MVS methods [25, 42], with their efficient paral-
lelization structure and robust performance, are more suitable and
already widely applied for large-scale scene reconstruction. How-
ever, common PatchMatch MVS requires performing PatchMatch
operations several times through all pixels globally from random
initialization. These intensive computation especially on large scale
datasets introduce an unnegligible overhead when using them as
geometric cues for NSR.

Neural surface reconstruction. Recently, rendering-based neu-
ral surface reconstruction methods [12, 19, 27, 32, 46, 47] have
become a promising way to promote the development of 3D recon-
struction due to their high-quality reconstruction results, especially
for fine structures [13, 35] and training speed [24, 33, 38]. The multi-
resolution hash encoding [22] provides a compact high-resolution
feature representation which shows its potential for high-fidelity
reconstruction for large scenes. Li et al [13] introduce a progressive
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Figure 2: Method overview. (a) We propose a Fast PatchMatch MVS Module (Section. 3.4) to rapidly propagate SFM points to
obtain high-confidence geometry cues. Then, we use these cues to train our Learnable Geometric Guider (LG Guider, Section 3.2).
The LG Guider which position should be used to fit the input radiance and can be continuously refined by rendering loss. To
address the synchronization issue between the Guider and the lagging radiance field, we propose a three steps Divide-and-
Conquer training strategy (Section. 3.3). This strategy enables the Guider to efficiently guide the radiance field training while
preserving its learned geometric information from being disrupted by the rendering. (b) The detail of our Divide-and-Conquer
training strategy. We bake the geometry cues into LG Guider and Geometry net in Step 1, then freeze the LG Guider parameters
and initialize the whole radiance field in Step 2. In Step 3, we use rendering loss to refine the radiance field and our LG Guider
and propose 𝐿𝑝𝑟𝑜𝑝 to preserve the geometry information the Guider carries from being impaired.

training strategy on the multi-resolution hash encoding represen-
tation, and a numerical calculation of normals, firstly extending
the high reconstruction accuracy to large outdoor scenes. However,
on large-scale aerial scenes, large geometrical errors often occur
due to the more server shape-radiance ambiguity in the complicate
large scenes as show by Neuralangelo [13] results in Figure 6.

Neural surface reconstruction with geometry cues.Many
works incorporate geometry cues into NSR reconstruction to ad-
dress the ambiguity problem. Several of these utilize the geometry
cues as a geometry loss to ensure that the geometry reconstructed
from NSR are consistent with the geometric cues. However, noisy
geometry cues persistently contribute to the loss, resulting in over-
smooth effects on the detailed structures. To avoid the intensive
computation of global optimization [7, 25] of MVS, some other
works directly use the photo consistency measurement, Normal-
ized Cross-Correlation (NCC) as geometry cues. However, NCC, a
highly localized geometric measurement, often fails to give reliable
geometry in the ambiguous areas, resulting in a worse reconstruc-
tion in the large scenes(see Supplementary Materials for details).

Another approach retrains the sampling points around the geomet-
ric cues to deal with noisy geometric cues. Wei et al employ the
confidence of geometric cues to define the sampling range around
the prior to deal with noises. However, the confidence of geometric
cues is difficult to assess and manually set the threshold to the sam-
pling ranges cannot be applied to different and variable datasets.

3 Method
As shown in Figure 2, MegaSurf proposes a Fast PatchMatch MVS
Module to efficiently obtain the geometry cues (Section 3.4). Then,
we propose a Learnable Geometric Guider (Section 3.2) to learn
these reliable geometry cues. Next, MegaSurf employs a Divide-
and-Conquer training strategy (Section 3.3) to train the radiance
field.

3.1 Preliminary
Neural radiance field.NeRF [21] represents a complex 3D scene as
a learned function that maps each 3D point and corresponding ray
direction to a color and density. It integrates the color of sampled
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points along the ray to render each pixel:

C (𝑟 ) =
∑︁
𝑖

𝜔𝑖c𝑖 , 𝜔𝑖 = 𝑻 𝑖𝛼𝑖 , 𝛼𝑖 = 1 − exp (−𝜎𝑖𝛿𝑖 ) , (1)

where𝛼𝑖 is the opacity of the 𝑖th sample point along the ray, 𝜎𝑖 is the
corresponding density, which is also the learned function’s output.
𝛿𝑖 = 𝑡𝑖 − 𝑡𝑖−1, is the distance between two sample points, 𝑡 is the
distance to the ray center. 𝑻 𝑖 =

∏𝑖−1
𝑗=1

(
1 − 𝜎 𝑗

)
is the accumulated

transmittance. As the geometry of NeRF is represented by density,
extracting surfaces from densities often leads to noisy results.

Neural surface reconstruction. Most rendering based NSR
methods take NeRF as the backbone and use signed distance func-
tion (SDF) as the geometric representation instead of density in
NeRFs. The surface can be represented by the zero-level set of the
SDF, 𝑆 = {x : 𝑓 (x) = 0}, where 𝑥 is a 3D position. To use volume
rendering, VolSDF [46] defines the volume density function 𝜏 to
map the signed distance 𝑓 (𝑥) to volume density 𝜎 :

𝜏 (x) = 𝛽−1Ψ𝛽 (𝑓 (x)), (2)

where 𝛽 > 0 is a scheduling parameters and approaches 0 during
optimization,𝜏 (x) is the cumulative distribution funcion (CDF) of
the zero-mean Laplace distribution with scale 𝛽 . Manually control-
ling the 𝛽 allows different reconstructed cases to have the same 𝛽 ,
so that the surface details of different cases are consistent.

Neuralangelo. Recently, multi-resolution hash encoding pro-
posed by Muller et al. [22] is a compact feature representation that
can represent large-scale scenes in unprecedented detail. Neuralan-
gelo [13] designs a coarse-to-fine optimization scheme to recon-
struct the surfaces with progressive levels of detail:

𝛾𝑙 = [𝐹0, 𝐹1, ..., 𝐹𝑠𝑡𝑎𝑟𝑡+𝑙 ], 𝑙𝑠𝑡𝑎𝑟𝑡 < 𝑙 < 𝑙𝑚𝑎𝑥 , (3)

where 𝛾 represents the features from hash grids, 𝐹 is the features of
each level of hash grid, and the coarse to fine resolution spans from
level 𝑙𝑠𝑡𝑎𝑟𝑡 to level 𝑙𝑚𝑎𝑥 . Another important contribution is the
design of a numerical gradient computation to distribute the back-
propagation updates to wider neighboring hash grids to improve
the smoothness of surface reconstruction:

∇𝑥 𝑓 (𝑥) =
𝑓 (𝛾 (𝑥 + 𝜖𝑥 )) − 𝑓 (𝛾 (𝑥 − 𝜖𝑥 ))

2𝜖
, (4)

where 𝜖 is the step size away from 𝑥 for sampling points to calculate
gradient numerically.

However, when applying it to large-scale aerial datasets, severe
shape radiance often happens in the areas of heavy shadows, low
textures, and illumination variations.

3.2 Learnable sampling guided NSR
Our learnable geometric guider borrows the sampling proposal
network to distill the geometric clues to restrain samplings in the
ambiguity areas. The proposal net adopts a two-level, (coarse level:
𝑃𝑟𝑜𝑝0 and fine level: 𝑃𝑟𝑜𝑝1), coarse to fine hierarchical sampling
procedure [21]. Each level consists of a small multi-resolution hash
grid and a tiny MLP to learn the importance of sampling to pro-
pose informative samples to subsequent geometry and render net
to learn the SDF and radiance field as shown in Figure 2. A naive
solution is using geometric cues to train the LG Guider while si-
multaneously training the whole network. This approach is similar
to [37] which constrains the sampling during training, but our

(a) Without geometry cues

(c) Train the Guider and radiance field at 
early training stage

(b) Train the Guider and radiance field with 
geometry cues all time

(d) Divide-and Conquer training strategy

wrong 
geometry

wrong 
geometry

detail degradation

Figure 3: The illustration of the impact of different training
strategies using geometry cues. (a) Training without geome-
try cues. (b) Train the LGGuider and radiance field simultane-
ously using geometry cues all the time. (c) Only use geometry
cues to train the LG Guider and the radiance field at early
training stage. (d) Our Divide-and-Conquer training strat-
egy showing in Figure 2. For ablation studies on all settings,
please refer to the supplementary material.

sampler is learnable. As the geometric noises affect the training
process all the time, this solution would also inevitably introduce
noisy geometry cues to the final reconstruction, leading to missing
details as shown in Figure 3b. Another approach is to bake the
geometric cues by training LG Guider and the whole network at
the beginning of the training and then letting the network refine
the noisy geometric guider without using geometric cues. However,
when introducing the render net into the baking step, the ambiguity
problem of rendering will directly affect the baking results, leading
to some remaining geometric errors in the final reconstruction, as
shown in Figure 3c.

3.3 Divide-and-Conquer training strategy
We propose a Divide-and-Conquer training strategy to distill the
geometric information into the LG Guider and enable it to specify
specific positions in the radiance field for optimization. The Divide-
and-Conquer training strategy consists of three steps: 1) Baking
geometry cues into LG Guider, 2) Initializing the radiance field, 3)
Refining training.

Step1: Bake cues into LG Guider. In baking stage, we train
the LG Guider with geometry net with geometry cues, to distill the
prior geometric cues to prior knowledge of sampling and SDF field
while leaving render net untrained as shown in Figure 2 bottom left.
The reason for not training the render net at this stage is that when
rendering loss is introduced, the introduced ambiguity problem can
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affect the distillation of prior geometric knowledge to both the LG
Guider and the geometry net. This reduces the effectiveness of LG
Guider to resolving ambiguities as shown in bottom left in Figure 3

To be specific, we maximize the sampling weights 𝜔ℎ given by
coarse level 𝑃𝑟𝑜𝑝0 and fine level 𝑃𝑟𝑜𝑝1 and the radiance field weight
𝜔𝑔𝑒𝑜 given by geometry net within the range [𝑡𝑝𝑟𝑖𝑜𝑟 − 𝜖, 𝑡𝑝𝑟𝑖𝑜𝑟 + 𝜖]
around the geometry cues 𝑡𝑝𝑟𝑖𝑜𝑟 :

𝐿𝑝𝑟𝑜𝑝 =1 −
∑︁
𝑖∈Λ

(𝜔ℎ
𝑖 + 𝜔

𝑔𝑒𝑜

𝑖
),

Λ : {𝑖 : 𝑡𝑝𝑟𝑖𝑜𝑟 − 𝜖 < 𝑡𝑖 <𝑡𝑝𝑟𝑖𝑜𝑟 + 𝜖}, ℎ ∈ 𝑃𝑟𝑜𝑝0, 𝑃𝑟𝑜𝑝1,
(5)

where 𝑡𝑝𝑟𝑖𝑜𝑟 is the distance between the camera center to the 3D
point corresponding to the depth cue. The computation of 𝜔ℎ

𝑖
fol-

lows the Eqn. 1, we replace the geometry net output 𝜎 with the LG
Guider output 𝜎𝑝𝑟𝑜𝑝 .

We further add a Curvature loss to improve the smoothness of
sampling field and the geometry to address the noise and incom-
pleteness of the geometric cues:

Lcurv =
1
𝑁

𝑁∑︁
𝑖=1

��∇2 𝑓 (x𝑖 )
�� , (6)

The overall loss of step 1 is:

𝐿𝑠𝑡𝑒𝑝1 = 𝐿𝑝𝑟𝑜𝑝 + 𝐿𝑐𝑢𝑟𝑣 . (7)

In this way, step 1 completes the training of the LG Guider and
also finishes the initialization of the geometry net. Next, we need
to initialize the entire radiance field by adding color information to
the geometry represented by the geometry net.

Step2: Initialize radiance field. Since our geometry net and
render net share a multi-resolution hash grid to provide hash in-
dexed feature vectors, modifications to the render net will impact
the geometry net. However, the structure of the LG Guider is in-
dependent of the geometry net and render net. To prevent the
learned information of the LG Guider from being compromised by
the uninitialized render net, we freeze the parameters of the LG
Guider.

Since the parameters of the LG Guider are fixed, the sampling
positions outputted by the LG Guider are also fixed. The radiance
field will only prioritize using these positions to fit the input colors,
which will help overcome shape-radiance ambiguity.

The step 2 training loss is defined as:

𝐿𝑠𝑡𝑒𝑝2 = 𝐿𝑐𝑜𝑙𝑜𝑟 + 𝐿𝑐𝑢𝑟𝑣 + 𝐿𝑒𝑖𝑘𝑜𝑛𝑎𝑙 . (8)

We take rendering loss 𝐿𝑐𝑜𝑙𝑜𝑟 as primary loss, and take Curvature
loss 𝐿𝑐𝑢𝑟𝑣 and Eikonal loss 𝐿𝑒𝑖𝑘𝑜𝑛𝑎𝑙 as regularization terms.

Step3: Refine the LG Guider and radiance field. In this step,
we unfreeze all parameters for training, aiming to use rendering loss
to refine the LG Guider which is affected by prior noisy geometry.
During this process, we further employs the prior geometry cues
to avoid the rendering to step back into ambiguity regions, hence
we introduce Non occupancy loss 𝐿𝑛𝑜𝑐𝑐 :

𝐿𝑛𝑜𝑐𝑐 = | |
∑︁
𝑖∈Γ

𝜔𝑖𝑐𝑖 | |1,

Γ :{𝑖 : 𝑡𝑖 < 𝑡𝑝𝑟𝑖𝑜𝑟 − 𝜖},
(9)

where 𝜔 and 𝑐 is given by geometry net and render net. 𝐿𝑛𝑜𝑐𝑐 is
used to ensure that no new surfaces appear between the camera

center and the surfaces corresponding to reliable cues. Thus that the
accumulated color should be nearly black color and 𝐿𝑛𝑜𝑐𝑐 should be
close to 0. As the LG Guider decides the radiance field’s sampling
positions, the rendering loss can be backpropagated to LG Guider,
which makes the sampling more precise. We add a Non occupancy
loss into the loss of step 2:

𝐿𝑠𝑡𝑒𝑝3 = 𝐿𝑐𝑜𝑙𝑜𝑟 + 𝐿𝑛𝑜𝑐𝑐 + 𝐿𝑐𝑢𝑟𝑣 + 𝐿𝑒𝑖𝑘𝑜𝑛𝑎𝑙 . (10)

After training is completed, we utilize Marching Cube [18] to ex-
tract the zero level set from the signed distance function (SDF)
represented by the geometry net as the final reconstructed mesh.

3.4 Fast PatchMatch MVS Module

(a) Images (b) SFM points (c) Confidence mask

Figure 4: The illustration of the high-confidence region ac-
quired by our Fast PatchMatch MVS module. (a) The input
images. (b) Sparse SFM points. (c) The high-confidence posi-
tion which we used as the geometric prior during our NSR
training.

Prelimiary of heavy PatchMatch MVS module. Commonly
used PatchMatch MVS module starts from randomly initializing
geometry on each pixel, and every pixel uses PatchMatch opti-
mization to select its best geometric candidate with the smallest
photo-consistency loss 𝑬𝑁𝐶𝐶 from all the candidates propagated
from its neighboring pixels[25, 42]. In a nutshell, PatchMatch op-
eration is to chose the best geometric candidate propagated from
neighborhoods for each pixel. Every pixel will continuously up-
date its geometry through PatchMatch until it receives its accurate
geometry. Due to the random initialization, pixels often require
several (4 times in [42]) global PatchMatch optimizations to get the
accurate candidate to converge, which are the major computation
cost contribute to MVS.

Fast local propagation from SFM points. Instead, we start
from high confident SFM points in each image as activate key points
𝑝𝑎𝑐𝑡 to propagate the information to surrounding neighbors. We
randomly select eight neighboring pixels for each 𝑝𝑎𝑐𝑡 within a
11*11 pixel area as candidate key points 𝑝𝑐𝑎𝑛𝑑 . Next, we perform
PatchMatch operation on the 𝑝𝑐𝑎𝑛𝑑 . The 𝑝𝑐𝑎𝑛𝑑 become a new 𝑝𝑎𝑐𝑡
when they satisfy that the distance of the 𝑝𝑐𝑎𝑛𝑑 to the corresponding
𝑝𝑎𝑐𝑡 is less than the given reconstruction accuracy.

In this way, if the 𝑝𝑐𝑎𝑛𝑑 is in the similar plane with the 𝑝𝑎𝑐𝑡 ,
it immediately receive the its accurate candidate geometry from
𝑝𝑎𝑐𝑡 which will be most likely selected from one-step PatchMatch
operation with a minimal photo-consistency loss comparing to
other neighboring geometric candidates.



Yusen Wang, Kaixuan Zhou, Wenxiao Zhang, and Chunxia Xiao

When the activated key point is determined, we design a skip
propagation strategy to further propagation by generating a neigh-
bor mask from the activated key as shown in Figure 5. No new key
point would be sampled within this mask. This is to mitigate the
incorrect propagation to the outside of the plane across the bound-
ary. When no 𝑝𝑎𝑐𝑡 exists, we perform the PatchMatch operation
for all pixels that are not sampled.

Our propagation strategy ensures every pixel to perform Patch-
Match operation once to speed up MVS to more than 4 times.
As shown in Figure 4, Our reconstruction aims to reconstruction
high confident large planar geometries from SFM points where
large shape-radiance ambiguities more likely occur, and leaves
non-planar geometries, such as trees and fine details, where NSR
methods can reconstruct better.
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Figure 5: The propagation strategy of our Fast PatchMatch
MVS module. The high-confidence geometric information is
progressively propagated to its surrounding area.

4 Experiments
4.1 Experimental Setup
Baselines. Our experiments are conducted on UrbanScene3D [16],
Mill19 [29] and Songshanhu which is collected by our drone. Their
areas are between 60000𝑚2 (300𝑚 × 200𝑚) and 150000𝑚2 (300𝑚 ×
500𝑚). We divided the whole scenes into several blocks and each
block covers a 150m x 150m ground region. We compare MegaSurf
with ACMH [42], a traditional reconstruction method, and two
NSR methods: Bakedangelo [48] and Monoangelo. Bakedangelo
combines BakedSDF [47] with Neuralangelo [13] settings and has a
better background modeling, which is more efficient than Neuralan-
gelo. We migrate the key ideas of MonoSDF [49] to Bakedangelo
which called Monoangelo, as the results obtained by MonoSDF are
generally oversmooth.

We train MegaSurf for 200k iterations per block (step1: 10k, step2
10k, step3: 180k). The memory consumption is about 22G. The
efficiency is basically the same as Bakedangelo [48]. The weights
of Curvature loss, Eikonal loss, and 𝐿𝑛𝑜𝑜𝑐 are all 1e-3; the others
are all 1. After NSR training, we extract the mesh from the SDF by
Marching Cube [18]. We compared the reconstruction results of
SciArt and Polytech with the LiDAR ground truth following the
official evaluation protocol.

4.2 Comparisons
We developed our Fast PatchMatch MVS module on ACMH soft-
ware [42], which claims the better quality, and three time speed
than another popular open source software, COLMAP [25]. We
project the high-confidence geometric cues obtained by our Fast
PatchMatch MVS module to the 3D space to form a point cloud and
compare it with ACMH.

Table 1: Quantitative results of generating the priors of our
Fast PatchMatch MVS module vs ACMH.

Method 𝐴𝑐𝑐50 / 𝐶𝑜𝑚𝑝50 / 𝑂𝑣𝑒𝑟𝑎𝑙𝑙50 ↓ 𝐴𝑐𝑐95 / 𝐶𝑜𝑚𝑝95 / 𝑂𝑣𝑒𝑟𝑎𝑙𝑙95 ↓ 𝑃𝑀 𝑇𝑖𝑚𝑒 ↓
SciArt
ACMH 0.1566 / 0.1432 / 0.1499 0.2035 / 0.3663 / 0.2849 7274s
Ours 0.1629 / 0.1320 / 0.1475 0.2010 / 0.3832 / 0.2921 1357s

Polytech
ACMH 0.1021 / 0.1043 / 0.1032 0.1701 / 0.2300 / 0.2000 7641s
Ours 0.1227 / 0.1218 / 0.1222 0.1937 / 0.2704 / 0.2320 1460s

Table 2: Quantitative evaluation of reconstruction with ex-
isting methods on the UrbanScene3D dataset. MegaSurf
achieves the best surface reconstruction performance.

Method CD ↓ 𝐴𝑐𝑐95 ↓ 𝐶𝑜𝑚𝑝95 ↓ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙95 ↓
SciArt
ACMH 1.1675 0.2958 0.5136 0.4047
Bakedangelo 1.3938 0.3319 0.5813 0.4566
Monoangelo 1.4142 0.3778 0.6152 0.4965
Ours 1.0574 0.2990 0.4138 0.3564

Polytech
ACMH 0.6913 0.1588 0.2499 0.2044
Bakedangelo 1.1029 0.2989 0.3969 0.3479
Monoangelo 0.7414 0.1810 0.2472 0.2141
Ours 0.6593 0.1763 0.2086 0.1925

We report quality evaluation results for the top 50% accuracy
and 95% accuracy points to reduce the influence of noise. Table 1
shows that the reconstruction accuracy of our module is compa-
rable to ACMH, and the speed of the Patchmatch stage is 4 times
faster. This matches the configuration of ACMH, which applies
four times PatchMatch global sweeps on each pixel. Furthermore,
ACMH requires a depth fusion step to filter noisy geometries for
the final geometric cues. This step is extremely slow when a large
number of images are applied due to their naive implementation,
which is not counted in our table. Note that we do not need this
fusion step and can also get comparable geometries with reliable
masks.

We provide qualitative and quantitative comparisons to evaluate
the performance of our method. Fig 6 and Table 2 shows the results
respectively. We achieved the best results in terms of the Chamfer
Distance (𝐶𝐷) and Overall score (𝑂𝑣𝑒𝑟𝑎𝑙𝑙 ).

Bakedangelo can generate realistic details but suffers inherent
shape-radiance ambiguity due to the lack of geometric constraints,
often leading to incorrect geometry. Traditional methods such as
ACMH are stable in large scene reconstruction. However, due to the
large amount of noise in point clouds, the triangulation may incor-
rectly connect the points and cause over-smoothing. Monoangelo
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Figure 6: Qualitative results on the UrbanScene3D dataset. MegaSurf both have the robustness to the severe shape-radiance
ambiguity and preserve high-fidelity details. The first four columns show the Normal of the corresponding mesh. (Polytech: 12
blocks, Residence: 16 blocks, SciArt: 6 blocks)

takes depth priors as a regular term to guide the NSR optimiza-
tion. The depth provided by MVS can help Monoangelo overcome
shape-radiance ambiguity, but the noise in priors makes it difficult
to reconstruct the fine geometric details. Our MegaSurf utilizes

the LG Guider to learn accurate geometric knowledge and prior-
itize fitting input colors to guide certain regions of the radiance
field, thereby overcoming the shape-radiance ambiguity present
in Bakeangelo. Additionally, since MegaSurf does not directly em-
ploy inaccurate geometry loss and the LG Guider can continuously
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Figure 7: Visualization results of the ablation study. For more settings, please refer to the supplementary material.

self-optimize based on rendering loss during training, the given
sampling positions become more precise, resulting in finer details
than Monoangelo.

4.3 Ablations
The experiment was conducted on UrbanScene3D. The qualitative
and quantitative evaluation results are shown in Fig 7 and Table 2.
LG Guider. We freeze the parameters of the LG Guider (Freeze
𝑃𝑟𝑜𝑝) after step2 training, the sampling position given by LGGuider
can no longer vary. When the parameters of the LG Guider are not
affected by the rendering loss of step 3, we found that the ambiguity
is somewhat alleviated. This because the LG Guider has already
learned the geometric information at step1. However, LG Guider
loss its ability to refine its sampling field during training, resulting
in over-smoothing.
Non occupancy loss. 𝐿𝑛𝑜𝑐𝑐 is designed to prevent the new surface
from appearing in areas where 𝜎 should be smaller according to
the reliable geometric information when we take rendering loss at
optimization step 3. When 𝐿𝑛𝑜𝑜𝑐 is removed, we can see that the
scene has some raised surfaces at corner regions which is easily
suffers the ambiguity.
Training strategy.We also carry out the experiments to prove that
our training strategy is effective and outperforms other strategies
mentioned in Fig 3. Please refer to our supplementary material.

Table 3: Quantitative results of the ablation study on the
UrbanScene3D dataset.

Method CD ↓ 𝐴𝑐𝑐95 ↓ 𝐶𝑜𝑚𝑝95 ↓ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙95 ↓
SciArt
Base 1.3938 0.3319 0.5813 0.4566
Freeze 𝑃𝑟𝑜𝑝 1.4585 0.3736 0.6982 0.5359
No 𝐿𝑛𝑜𝑐𝑐 1.1322 0.2980 0.4649 0.3815
Full 1.0574 0.2990 0.4138 0.3564

Polytech
Base 1.1029 0.2989 0.3969 0.3479
Freeze 𝑃𝑟𝑜𝑝 0.8350 0.2218 0.3182 0.2700
No 𝐿𝑛𝑜𝑐𝑐 0.6782 0.1749 0.2120 0.1935
Full 0.6593 0.1763 0.2086 0.1925

5 Limitations and Future work
Due to the high reconstruction accuracy of MegaSurf, seams are
usually imperceptible when assembling all the blocks together.
However, in some cases, seams may still be perceptible. Apply-
ing mesh refinement to the assembled model can effectively over-
come this issue. Recently, 3D Gaussian-based surface reconstruc-
tion [1, 2, 8, 9, 51] has become a research hotspot in surface re-
construction due to the fast training capability. While the recon-
struction quality needs further improvement. MegaSurf’s training
strategy can be adapted to Gaussian-based methods to enhance
reconstruction accuracy. Additionally, Gaussian splatting requires
a large number of 3D Gaussians to represent fine geometric sur-
faces, especially in large-scale scenes, which places high demands
on GPU memory. Therefore, using implicit encoding for Gaussians
or combining with SDFs may be promising future directions.

6 Conclusion
We introduced MegaSurf, a novel Learnable Sampling Guided sur-
face reconstruction approach for reconstructing large-scale scenes.
To accelerate the process, we developed a Fast PatchMatch MVS
module that efficiently propagates SFM information to surrounding
areas, yielding high-confidence geometric cues. Furthermore, we
introduced the Learnable Geometric Guider (LG Guider) to learn a
sampling field from these reliable geometric cues, which can be con-
tinuously refined through rendering loss minimization. To address
the challenge of shape-radiance ambiguity, we employed a Divide-
and-Conquer training strategy to harmonize the LG Guider and
the radiance field, resulting in high-fidelity reconstructions. Exten-
sive experiments on large-scale datasets demonstrate the superior
performance of our method.
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