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Abstract. The images used to reconstruct 3D models in outdoor scenes
are generally captured at different scales. Accurately reconstructing ge-
ometry from multi-scale images has not been extensively addressed. This
work proposes a new volume rendering method that combines cone sam-
pling and implicit surface representation to better model geometries from
multi-scale images. Besides, to address the problem of unsmooth gradient
of different frequency bands in general position encoding, we propose a
dynamic position encoding strategy. Meanwhile, we propose an adaptive
sampling strategy in image space to focus on the important regions near
the reconstructed surfaces and the difficult regions where rendering er-
ror exists. Experiments are conducted on the Tanks and Temples dataset
as well as the aerial photography dataset. The results show that, com-
pared to the state-of-the-art methods, our work can produce competitive
or better high-quality surface reconstruction, especially for scenes with
multi-scale images and complex geometric structure.

Keywords: 3D Reconstruction · Implicit Surface Reconstruction · Neu-
ral Radiance Field · Multiple Scales · Photometric Consistency

1 Introduction

Reconstructing 3D geometry from multi-view scene images is one major task in
computer vision. Traditional methods, like Structure from Motion (SfM) [18],
have achieved relatively accurate 3D reconstruction results. The camera poses
obtained through sparse reconstruction can be further used for dense recon-
struction in Multi-view stereo (MVS) [6]. However, MVS methods usually use
image-matching algorithms to perform dense matching and restore 3D point
clouds. These methods perform well on Lambert Surfaces but may fail in weak
texture areas or reflective areas.

Recently, some implicit surface reconstruction methods based on the neural
radiance field have been proposed. Their main idea is to model the scene using
multilayer perceptrons (MLPs) and then reduce the difference between the real
images and the reconstructed images through differentiable rendering. There
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is a certain gap between the predicted geometry and the real geometry due
to the shape radiance ambiguity. In addition, when reconstructing the complex
geometry of object surfaces, specular reflection scattering on their surfaces makes
it difficult for the network to fit this view-dependent effect.

We aim to reconstruct high-quality implicit surfaces from multi-scale images
captured in outdoor scenes. We propose a new volume rendering method in this
paper that combines hybrid cone sampling and SDF surface representation. The
method decomposes the color of each conical frustum into view-dependent and
view-independent components. Besides, to address the problem of unsmooth gra-
dient of different frequency bands in position encoding, we propose a dynamic
position encoding strategy. Meanwhile, we propose an adaptive sampling strat-
egy in the image space to concentrate sampling rays in the reconstruction area
and areas with large error. Finally, we introduce segmentation masks to handle
dynamic objects and textureless regions.

2 Related Work

The task of 3D reconstruction is to recover the geometry of the real world from
the perspective of vision. Traditional methods, such as SFM [18] and MVS [6],
complete the transformation from 2D to 3D by extracting and matching image
features and reconstructing the 3D geometry.

In recent years, 3D reconstruction through neural networks has gradually
become mainstream. These methods can be roughly categorized into two types:
surface rendering [1, 9, 10, 15, 22, 24, 26] and volume rendering [2–5,12, 13, 17, 20,
25,27,31]. Besides, recovering geometry, texture, lighting and other information
of the scene from the input images is the main task of inverse rendering. So 3D
reconstruction can be regarded as a subtask of inverse rendering. That is, by
constraining the rendered images and the real images, the parameter represen-
tation of the scene can be continuously optimized to make the final rendering
effect more realistic.

The surface rendering method assumes that there is only one intersection
point between light rays and surface, so the gradient is backpropagated only
near the surface. For the surfaces with sharp depth changes, it may produce
relatively smooth reconstruction results. As for the volume rendering, NeRF [14]
has applied volume rendering technology, and its high quality effects in rendering
have attracted wide attention. However, due to the existence of shape radiance
ambiguity of NeRF [14], it is difficult to extract an accurate surface from NeRF.
In order to solve this ambiguity, a depth prior is proposed in NerfingMVS [28]
to constrain the sampling process of NeRF, which not only makes the rendered
depth map more accurate, but also makes the rendered image more realistic.

There also are several methods for outdoor scene 3D reconstruction. Sun et
al. [19] proposed a hybrid-voxel and surface-guided sampling technique, which
can derive a better sampling area than sphere. It also utilizes the segmentation
mask and appearance embedding. Other methods primarily aimed at novel view
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Fig. 1: Overview of our method. We project a cone from each pixel of the in-
put posed image. The SDF value and the color of each conical frustum, which
represents a specific sampling region, are generated by feeding the IPE into a
rendering network together with the viewing direction d and the appearance em-
bedding. We use the rendering loss to optimize the parameters of the network.

synthesis in large outdoor scenes [21, 30]. These large scenes have a significant
amount of data, which is often multi-scale in nature.

3 Method

Fig. 1 is the overview of our method. Firstly, we project a cone from each pixel
of the input posed image. The projected cone is divided into a series of conical
frustums, each representing a specific sampling region. Then, an integrated po-
sitional encoding (IPE) representation is constructed. The SDF value and the
color of each conical frustum are generated by feeding the IPE into a neural
radiance field network along with the camera viewing direction and the appear-
ance embedding. Next, the SDF values and the colors of all conical frustums are
combined using the optimized volume rendering method to calculate the color
value of the pixel. Specifically, the optimized volume rendering method first pre-
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dicts the depth value of the pixel by a pre-trained depth estimation network
and then designs an attenuation coefficient term to multiply with the original
weight formula. Finally, the parameters of the network are optimized by itera-
tively training to generate accurate geometry and appearance representations of
the current scene.

3.1 Multi-Scale Rendering with SDF Representation

Multi-Scale Sampling Strategy. We divide the cone region into a set of in-
tervals [2]. For each interval, we calculate the mean µ and covariance Σ of the
conical frustum and characterize these values by integrated positional encod-
ing(IPE). The specific form of IPE is shown as:

γ(µ,Σ) =

{[
sin

(
2ℓµ

)
exp

(
−22ℓ−1 diag(Σ)

)
cos

(
2ℓµ

)
exp

(
−22ℓ−1 diag(Σ)

) ]}L−1

ℓ=0

, (1)

where exp
(
−22ℓ−1 diag(Σ)

)
represents the attenuation term and L is the higher

dimension of position encoding.

Color Representation. Our network decomposes the color of a conical frustum
into the view-independent color, like diffuse reflection, and the view-dependent
color, like specular reflection [22]. View-independent color can be directly output
by spatial MLP. In order to represent the view-dependent color, we use the
reflection direction as the input of the network and parameterize it as a function
of the normal vector and viewing direction. The specific form of the reflection
direction is shown as:

ω̂r = 2 (ω̂0 · n̂) n̂− ω̂0, (2)

where ω̂o = −d̂ is a unit vector from a point in space to the center of the camera,
opposite to the view direction d̂, and n̂ is a normal vector at the point, which is
the gradient of the SDF values.

With spatially varying materials in complex scenes, the view-dependent color
cannot be represented only as a function of reflection direction. Hence, we in-
troduce Integrated Directional Encoding (IDE) [22]. IDE encodes the distribu-
tion of reflection direction ω̂ using a set of spherical harmonics Y m

l under von
Mises-Fisher (vMF) distribution [22] with mean ω̂r and concentration parameter
k = 1/ρ. The roughness ρ is output by the spatial MLP. The final integrated
direction encoding function is defined as:

IDE(ω̂r, k) =
{
Eω̂∼vMF(ω̂r,k) [Y

m
l (ω̂)]

}
,

with (l ,m) ∈
{
(l ,m)|l = 20, 21, ..., 2L;m = 0, 1, ..., l

}
.

(3)

The IDE expression can be further simplified as:

IDE(ω̂r, k) = Al(k)Y
m
l (ω̂r),

with Al(k) ≈ exp(− l(l+1)

2k
).

(4)
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In outdoor scenes with uncontrollable lighting, the lighting conditions can
change. Therefore, we defines an appearance embedding that encodes each image
into a vector as the input of appearance MLP. The color of a conical frustum
can be synthesized by combining the view-independent color cd output from the
spatial MLP and the view-dependent color ca output from the appearance MLP.
The blending coefficient of the viewpoint-dependent color is S , which is output
by the spatial MLP. The color of a conical frustum is shown as:

color = cd + S × ca. (5)

Depth-Guided Volume Rendering. Before introducing the optimized vol-
ume rendering strategy in our work, we first review the weight formula used in
NeuS [23]. The specific form of the weight formula is defined as:

w(t) = λ(t)T (t)ρ(t), (6)

where T (t) corresponds to the accumulated transmittance along the ray and ρ(t)
corresponds to the opacity in NeRF. These two functions can be respectively
expressed as:

T (t) = Φs(f(p(t))), (7)

ρ(t) = max

(
−dΦs

dt (f(p(t)))

Φs(f(p(t)))
, 0

)
, (8)

where Φs(x) = (1 + e−sx)
−1, p(t) represents pixel rays and f represents SDF

MLP. This weight function can achieve a local maximum at the point where the
SDF value is 0. When a ray penetrates through multiple surfaces, the weight
of the first surface is greater than the second surface. However, points near the
second surface penetrated by the ray still contribute to the final color.

To address the issue of weight ambiguity, we propose a depth-guided volume
rendering strategy. Specifically, we predict depth in multi-view images through a
pre-trained depth estimation network. For regions closer to the predicted depth,
their weights remain the same as the original weight values. For regions further
away from the predicted depth, a decay factor λ is introduced in the weight
formula to penalize the weights. The specific form of decay factor λ is shown as:

λ(t) =

{
1 0 < |Dp − t | < α

exp(β(α− |Dp − t |)) |Dp − t | ≥ α
, (9)

where Dp represents the depth predicted by the pre-trained depth estimation
network, t is the depth of the sampled point, α and β are pre-set hyperparameters
that control the confidence range and decay rate in the weight function. The final
weight function is shown as:

wnew(t) = λ(t)w(t). (10)
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Reference Image Predicted Mask Sampling Range

Fig. 2: From left to right: Original image, the foreground mask predicted by the
network, final sampling range after image processing. For not generating artifacts
in the edge area of the reconstructed object, the sampling range is larger than
the predicted mask.

3.2 Dynamic Position Encoding

NeRF [14] uses a strategy to encode the coordinates of three-dimensional points
in space. It encodes each coordinate of the point x and the observation direction
d to 2L dimensions, so that the network can fit the high-frequency part of the
scene. The coding formula is defined as:

p(x) =


sin(20πx), cos(20πx)
sin(21πx), cos(21πx)

· · ·
sin(2L−1πx), cos(2L−1πx)

(11)

According to Eq. (11), by making derivative of x , the scale coefficient will grad-
ually increase with the number of layers.

In order to solve this problem, a new position encoding strategy is proposed in
BARF [11]. Based on the original position encoding, it adds a weight coefficient
to gradually release the network’s response to high-frequency information during
the training process. We use this strategy to define the weight coefficient of the
position encoding, the k-th weight ωk is defined as:

ωk(β) =


0 if β < k
1−cos((β−k)π)

2 if 0 ≤ β − k < 1,

1 if β − k ≥ 1

(12)

where k = 0, 1, 2, ..., L− 1 and β is trainable in the optimization process, grad-
ually increasing from 0 to L. As the training gradually iterates, the position
encoding formula is closer to the Eq. (11). Thus, the final dynamic position
encoding fomula is defined as:

γ(x) = ωk(β)p(x). (13)
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Fig. 3: Ray sampling algorithm. We add a segmentation mask algorithm Detec-
tron2 [29] to exclude the ray belonging to transient objects from the training.
We let the ray weight of the poorly textured area (e.g. sky) approach 0 to avoid
reconstruction included in the spherical shell.

3.3 Adaptive Sampling Strategy in Image Space

Defining which pixel requires centralized sampling not only can accelerate the
convergence speed of the network, but also improve the geometry accuracy. In
this section, we introduce two adaptive sampling strategies proposed in our work.

Sampling Focusing Strategy. One idea for speeding up network convergence
is to reduce the sampling range in the reconstruction area. In Fig. 2, we use
NeRF++ [32] to model the background of the scene so that the foreground
mask can be extracted after a certain stage of training. Because the mask image
predicted by the network is not accurate enough, we still need to do some image
processing to eliminate noise. Besides, if we only use the denoised mask as the
sampling range, some artifacts will appear on the borders of the predicted mask
due to the lack of constraint for empty space. To enhance the constraints on
empty space, we expand the denoised mask to get a wider range of the mask.

Confidence-Based Sampling Strategy. To further optimize the geometry
structure of the scene, the confidence score between the rendered color and the
real color is calculated to assign lower confidence values to the positions where
the color estimation is inaccurate. This method can make the network pay more
attention to areas with inaccurate color estimation, thereby improving the ac-
curacy of scene geometry. The specific form of confidence Si

j is defined as:

Si
j = 1− 1

3

∣∣∣∣Ci
gt(j)− Ci

render(j)
∣∣∣∣
1
, (14)

where Ci
gt(j) is the ground truth color of the j -th pixel in the i -th image,

Ci
render(j) is the rendered color of the j -th pixel in the i -th image. ||.||1 repre-
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sents the L1 norm, calculating the absolute value of the color difference between
the two pixels.

3.4 More Details

When 3D reconstruction is carried out for outdoor scenes, different semantic
parts of the scene have different effects on 3D reconstruction, so we use semantic
segmentation to process different parts of the scene. Fig. 3 shows our segmen-
tation results and ray sampling strategy. In our algorithm, the panoramic seg-
mentation model pretrained in detectron2 [29] is used to get the segmentation
mask. we use the scene segmentation to constrain the ray pointing to the sky so
that the rays in these places are in the weight sum area 0 in the network. Ad-
ditionally, we only sample the static part of the scene when sampling, to ensure
that there is no occlusion problem for the same surface point to be recovered.

3.5 Loss Function

In general, we randomly sample the pixels of the input image to get {Ck,Mk,
ok, vk}, where Ck represents the color corresponding to the pixel, Mk ∈ {0, 1}
represents whether the pixel belongs to the sky area. ok and vk represent the
origin points and their directions of responding sampling rays respectively. The
final loss function is defined as follows:

Lsum = Lcolor + Lsky + Lreg. (15)

The color loss is defined as:

Lcolor =
1

m

∑
k

R(Ĉi,k, Ci,k), (16)

where Ĉi,k represents the pixel color rendered by volume rendering, Ci,k repre-
sents the ground-truth color and R represents L1 loss.

The sky mask loss is actually a variant of the mask loss. It can separate the
sky from the reconstructed foreground. The mask loss of sky is defined as:

Lsky = BCE(Mk, M̂k), (17)

where M̂k represents the sum of sample point weights on the ray predicted by
the network.

To regularize the SDF predicted by network fθ, we also use the eikonal term
[7] to normalize the sampling points on the ray:

Lreg =
1

mn

∑
k,j

(||∇f(p̂k,j)||2 − 1)2. (18)
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(a) (b) (c) (d) (e)

Fig. 4: Qualitative comparisons on the Tanks and Temples. (a) UNISURF [16];
(b) NeuS [23]; (c) Sun et al. [19]; (d) Ours; (e) Ground Truth.

4 Experiments

4.1 Implementation Details

We assume the reconstructed area to be inside a unit sphere and use two MLP
networks to represent the geometric part and color part of the scene respectively.
We use 8 layers with 256 hidden units for the geometry MLP and 4 layers with
512 hidden units for the color MLP. For spatial MLP, we use 8 layers with 256
hidden units. The number of sampled pixels is equal to the batch size, and we
set it to 1024. The initial learning rate is set to 5e-4 and dynamically changes
during the optimization process. The α value is set to 0.05. The learning rate lr
gradually decreases from (1− α)× lr to α× lr during the network optimization
process. We realize our method on a single NVIDIA RTX3090Ti GPU.
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Method Chamfer Dist. ↓ Precision ↑ Recall ↑
UNISURF 1.14 0.52 0.51
NeuS 0.83 0.70 0.56
Sun et al. 0.67 0.73 0.64
Ours 0.52 0.71 0.82

Method MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓
UNISURF 64.21 21.48 0.69 0.54
NeuS 63.59 23.33 0.71 0.51
Sun et al. 62.76 22.77 0.73 0.49
Ours 56.62 23.88 0.73 0.48

4.2 Qualitative and Quantitative Comparisons

We validate the effectiveness of our method using the Tanks and Temples dataset
[8] as well as the aerial photography dataset. The aerial photography dataset
derives from videos taken circularly around the reconstructed objects. We ex-
tract frames and pre-process them to generate the data format. We compare our
method with the current new representative methods, including UNISURF [16],
NeuS [23], and Sun et al. [19].

Qualitative results on Tanks and Temples with ground truth. Fig. 4
shows the qualitative results on the Tanks and Temples with ground truth. Since
the ground truth of this dataset is point cloud rather than mesh, we perform a
qualitative comparison by first downsampling the point cloud data of the ground
truth to 300,000 points. Then, we exploit the downsampled points for surface
reconstruction using the Ball Pivoting algorithm. In terms of qualitative results,
the proposed method in this study demonstrates superior performance in overall
structure and details.

Quantitative results. section 3.5 and section 3.5 show the quantitative results.
The results show that our method has achieved the best or the second-best
quantitative indicators in all aspects.

Qualitative results on the Tanks and Temples without ground truth.
Fig. 5 shows the qualitative results on the Tanks and Temples without ground
truth. In the family scene, other methods exhibit blurry details in the characters,
and the details of the arms and folds on the clothes are not well restored. Our
method can recover these details more effectively and outperforms Sun et al. [19]
in terms of overall structure. In the Francis scene, our method produces smoother
reconstruction results in the staircase area.

Qualitative results on the aerial photography dataset. Fig. 6 shows the
qualitative results on the aerial photography dataset. Our method presents cer-
tain degree of improvement compared to other methods. Compared to the base-
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(a) (b) (c) (d) (e)

Fig. 5: Qualitative comparisons on the Tanks and Temples. (a) Reference Image;
(b) UNISURF [16]; (c) NeuS [23]; (d) Sun et al. [19]; (e) Ours.

line method and the method proposed by Sun et al. [19], our method exhibits
noticeable improvements.

4.3 Ablation Study

To evaluate the impact of different components in our proposed method, we
design six variants: (a) w/o Multi-Scale Sampling ; (b) Only viewing direction as
input ; (c) w/o Depth-Guided Volume Rendering ; (d) w/o Dynamic Positional
Encoding ; (e) w/o Adaptive Sampling Strategy ; (f) w/o Segmentation Mask.

We conduct an ablation analysis of our method in the courthouse scene, and
the quantitative results of the experiments are shown in Table 1. The visual
effects of the experiments are illustrated in Fig. 7. (a) indicates that the multi-
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(a) (b) (c) (d) (e)

Fig. 6: Qualitative comparisons on the aerial photography dataset. (a) Reference
Image; (b) UNISURF [16]; (c) NeuS [23]; (d) Sun et al. [19]; (e) Ours.

Full model (a) (b) (c) (d) (e) (f)

Fig. 7: Ablation study results. The full model is on the left. (a) w/o Multi-Scale
Sampling; (b) Only viewing direction as input; (c) w/o Depth-guided Volume
Rendering; (d) w/o Dynamic Positional Encoding; (e) w/o Adaptive Sampling
Strategy; (f) w/o Segmentation Mask.
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Table 1: Quantitative comparison results of Ablation Study.
Variants Chamfer Dist. ↓ Precision ↑ Recall ↑
(a) 1.11 0.72 0.70
(b) 0.75 0.66 0.80
(c) 0.73 0.66 0.79
(d) 1.27 0.73 0.66
(e) 0.68 0.64 0.76
(f) 0.56 0.59 0.50
Full model 0.72 0.73 0.80

scale sampling strategy has a significant impact on the reconstruction results. (b)
suggests that modeling both specular reflections and illumination simultaneously
is important. (c) and (e) demonstrate that depth-guided weight formulation and
adaptive sampling strategy contribute to improved reconstruction accuracy. (d)
indicates that the dynamic position encoding strategy can restore the overall
structure of the scene more comprehensively. (f) shows that using a segmentation
mask strategy can effectively separate the sky from the reconstructed objects,
preventing the inclusion of sky-related artifacts in the reconstruction results.

5 Conclusion

We have proposed a method to reconstruct high-precision implicit surfaces from
multi-scale images captured in outdoor scenes. To integrate the multi-scale ren-
dering method into the geometric representation of the scene, we introduce a
novel volume rendering approach that combines hybrid cone sampling and im-
plicit surface representation. To address the problem of unsmooth gradient of
different frequency bands in general position encoding, we propose a dynamic
position encoding strategy. We also introduce an adaptive sampling strategy in
the image space to concentrate rays on the reconstruction and error-prone re-
gions. Finally, we introduce the segmentation mask to handle dynamic objects
and weak texture regions.
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