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Abstract

Reconstructing a dynamic human with loose clothing is an
important but difficult task. To address this challenge, we pro-
pose a method named DLCA-Recon to create human avatars
from monocular videos. The distance from loose clothing to
the underlying body changes rapidly in every frame when the
human moves and acts freely. Previous methods lack effec-
tive geometric initialization and constraints for guiding the
optimization of deformation to explain this dramatic change,
resulting in the discontinuous and incomplete reconstruction
surface. To model the deformation more accurately, we pro-
pose to initialize an estimated 3D clothed human in canonical
space, as it is easier for deformation fields to learn from the
clothed human than from SMPL. With both representations of
explicit mesh and implicit SDF, we utilize the physical con-
nection information between consecutive frames and propose
a dynamic deformation field (DDF) to optimize deformation
fields. DDF accounts for contributive forces on loose clothing
to enhance the interpretability of deformations and capture
the free movement of loose clothing effectively. Moreover,
we propagate SMPL skinning weights to each individual and
refine pose and skinning weights during the optimization to
improve skinning transformation. Based on more reasonable
initialization and DDF, we can simulate real-world physics
more accurately. Extensive experiments on public and our
own datasets validate that our method can produce superior
results for humans with loose clothing compared to the SOTA
methods.

Introduction
Reconstructing full-body 3D human models is an important
research topic in computer graphics. It has many applica-
tions in AR/VR (Bao et al. 2022; Cao et al. 2022, 2023),
virtual try-on, and video game industry. Traditionally, high-
fidelity human reconstruction requires multi-camera sys-
tems, controlled studios, and long-term works of talented
artists, making it expensive and highly specialized. Along
with the emergence of new applications like digit human in
the Metaverse, it demands lightweight and convenient recon-
struction solutions to create 3D digital avatars for complex
human motions and diverse manners of dressing.
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Figure 1: A dynamic loose clothing avatar created by our
DLCA-Recon method from a monocular video.

Compared to close-fitting wear, it is more difficult to
reconstruct dynamic humans with loose clothing, due to
the high freedom of body motions, the appearance diver-
sity, and the deformation randomness of loose clothes. Tra-
ditional methods based on explicit mesh are restricted by
fixed topologies and resolutions (Alldieck et al. 2018; Guo
et al. 2021). Recent methods based on the implicit neu-
ral representation for monocular human reconstruction have
achieved compelling results (Saito et al. 2019; Huang et al.
2020; He et al. 2020; Gropp et al. 2020; Zheng et al.
2021b; Xiu et al. 2022). These methods can handle arbitrary
topologies, enabling the representation of various clothing.
However, they require high-quality 3D supervision data and
NeRF-based methods usually produce noised geometry. In
addition, there are methods in a frame-by-frame manner,
but they fail to recover invisible parts. Directly regressing
3D surfaces from images is an alternative way (He et al.
2020; Huang et al. 2020; He et al. 2021; Peng et al. 2021a,b;
Weng et al. 2022; Li, Luo, and Xiao 2023; Luo et al. 2023).
They struggle with out-of-distribution of poses and shapes
and cannot carry out temporally continuous 3D reconstruc-
tions. SelfRecon (Jiang et al. 2022a) combines explicit and
implicit representation to reconstruct a temporally consistent
3D clothed human from a video. But it is restricted to tight
clothing and self-rotation movement.

To tackle creating a temporal-spatial coherent 3D model
for a human in loose clothing and free movement, we pro-
pose a new method DLCA-Recon based on SelfRecon (Jiang



et al. 2022a). When dealing with the diverse topology of
loose clothing, we initialize a clothed human 3D model in
canonical space using a single image avatar creation (Xiu
et al. 2023), unlike SMPL+D initialization of other methods.
Such a different starting point decreases the gap between ini-
tialization and subsequent deformation iterations, leading to
higher accuracy of mapping canonical points to the current
frame space (Chen et al. 2021; Zheng et al. 2022). During
the iterations of reconstruction, we focus on the dynamics
in the non-rigid field and carefully update weights in the
skinning transformation field to better explain and simulate
clothing movement. We propose a dynamics method DDF to
model the influence of related forces on the deformation of
loose clothing, enhancing deformation interpretability and
enabling DLCA-Recon to simulate real-world physics more
accurately. Moreover, we optimize human poses and man-
age the overall network optimization to prevent training col-
lapse. Our contributions could be summarized as follows,
• We propose to use an estimated human geometry as mesh

initialization in canonical space, which could better guide
the SMPL weight propagation to the body and clothes.
We especially fine-tune body pose and skinning weights
to improve skinning transformation;

• We propose a dynamic deformation field (DDF) to ac-
count for all major contributive forces, which could
model the free movement of body and clothes effectively;

• Extensively experimental evaluations on benchmark
datasets and casually captured monocular videos demon-
strate that our method outperforms existing methods. We
provide a more robust spatial-temporary reconstruction
method for 3D dynamic avatars with loose clothing.

Related Work
Clothed Human Reconstruction from Single-View Im-
age. Traditional human reconstruction often adopts a para-
metric model, e.g. SMPL (Loper et al. 2015) or SCAPE
(Anguelov et al. 2005) and only recover a naked 3D body
(Joo, Simon, and Sheikh 2018; Kanazawa et al. 2018). Many
methods use “SMPL+D” to represent 3D clothed humans
(Alldieck et al. 2018, 2019a,b; Lazova, Insafutdinov, and
Pons-Moll 2019; Zhu et al. 2019; Ma et al. 2020; Xiang et al.
2020). However, this “body+offset” approach is not flexible
enough to model loose clothing like dresses and skirts.

Recent methods introduce implicit representation to in-
crease topological flexibility. PIFu and PIFuhd (Saito et al.
2019, 2020) extract pixel-aligned spatial features from im-
ages to implicit surface function. However, these two meth-
ods do not leverage knowledge of the human body struc-
ture, resulting in overfitting the body poses in training data.
Consequently, they fail to generalize the 3D model to novel
poses and produce non-human shapes with broken or disem-
bodied limbs.

To address these issues, several methods (Huang et al.
2020; He et al. 2021; Zheng et al. 2021a,b; Liao et al. 2023)
combine parametric body models with implicit representa-
tions. To further generalize to unseen poses, ICON (Xiu
et al. 2022) regresses shapes from locally queried features.
These approaches enhance robustness to unseen poses but

compromise the generalization ability to various, especially
loose, clothing topologies. Recently, ECON (Xiu et al. 2023)
directly generates the clothed human from bilateral normal
integration, enabling loose-fitting clothing reconstruction.
But it tends to output bent legs and incorrect thickness of
human.

As these methods only consider single-image reconstruc-
tion, they cannot produce temporally consistent results. The
results can be wrong in other views. Moreover, these meth-
ods require a large amount of 3D scanned ground truth to
ensure generalization capability.

Clothed Human Reconstruction from Monocular
Video. Traditional methods require personalized rigged tem-
plates as prior and track the pre-defined human model based
on 2D observations (Xu et al. 2018; Habermann et al. 2019,
2020). These methods require pre-scanning and manual rig-
ging, unsuitable for lightweight applications. Some explicit
methods (Alldieck et al. 2018; Guo et al. 2021; Casado-
Elvira, Trinidad, and Casas 2022; Moon et al. 2022) omit
personalized rigged templates but are still limited to a fixed
resolution and topologies. Some methods (Pons-Moll et al.
2017; Tiwari et al. 2020; Xiang et al. 2022; Casado-Elvira,
Trinidad, and Casas 2022) reconstruct the clothing as a sep-
arate layer over the body with high-quality 3D clothing su-
pervision.

Some approaches introduce implicit methods to capture
the details and facilitate 3D body reconstruction. Neural-
Body (Peng et al. 2021b) represents dynamic human NeRF
based on SMPL. HumanNeRF (Weng et al. 2022) extends
articulated NeRF to improve novel view synthesis. NeuMan
(Jiang et al. 2022b) further adds a scene NeRF model. These
methods model the geometry with a density field, yielding
low-fidelity and spatial-temporary inconsistent human re-
construction. SelfRecon (Jiang et al. 2022a) combines ex-
plicit and implicit representation to reconstruct temporally
consistent 3D clothed humans, but it could not reconstruct
humans in loose clothing and free motion. Vid2avatar (Guo
et al. 2023) utilizes self-supervised scene decomposition to
achieve temporally consistent human reconstruction, but it
is not special for loose clothing.

Methodology
The proposed DLCA-Recon method is schematically illus-
trated in Figure 2. Like SelfRecon (Jiang et al. 2022a),
we jointly optimize the explicit and implicit representation.
Given a monocular video, we first randomly choose one
frame and define the canonical human representation in both
explicit mesh and implicit signed-distance field (SDF). Dur-
ing training, DLCA-Recon estimates the pose parameters for
each frame and its two neighboring frames, which would
be inputted into the forward deformation to deform the 3D
human model from canonical space to each frame’s space.
It consists of the non-rigid dynamic deformation field and
the optimized skinning transformation field. Our proposed
non-rigid dynamic deformation field (DDF) aims to cap-
ture the movement of loose clothing and generate spatial-
temporal coherent explicit meshes. Finally, we utilize mask
loss to control the shape of explicit mesh and improve details
through normal loss and color loss.
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Figure 2: The diagram of DLCA-Recon. Input a monocular video, DLCA-Recon first initializes a 3D human mesh in canonical
space. Through maintaining double representations of explicit mesh T and implicit SDF for the avatar, DLCA-Recon handles
the current i-th frame by pose parameter estimation, dynamic deformation field DDF, and loss calculation. In the backward
update procedure, the explicit representation loss updates the mesh T in the canonical space, and then the consistency loss
aligns the explicit representation and the implicit representation, finally the implicit loss updates all learnable parameters. The
gray arrow denotes an operation. The green rectangle represents a certain network and those with yellow borders are our
proposed modules.

Non-Parametric Initialization
Employing a coarse human body initialization provides en-
hanced adaptability to different types of loose clothing, so
we use a coarse human representation instead of SMPL in
canonical space. Specifically, we select a frame from the
monocular video and feed it into ECON (Xiu et al. 2023)
to obtain a geometry as the initialization. Then, to represent
high-fidelity geometry, we define a canonical SDF S by an
MLP f of the geometry using IGR (Gropp et al. 2020):

S = {xc | f(xc) = 0} , (1)

where xc is the vertex in canonical space.
Moreover, due to different cameras used in ECON and

weak supervision on 2D images, the geometry estimated
from ECON may have inconsistent scales and misaligned
positions in canonical space. In 3D reconstruction, providing
an initialization but dimensionally and positionally incorrect
could lead to convergence challenges, instability, and shape
distortion. So it is necessary to predict a SMPL in canonical
space, as well as align and scale the initialization with the
SMPL.

Dynamic Deformation Field
The deformation of a clothed human cannot be fully repre-
sented by skinning transformation. Following prior works
(Jiang et al. 2022a; Weng et al. 2022; Guo et al. 2023),

we decompose the deformation field into non-rigid defor-
mation field and skinning deformation field. Meanwhile,
based on the force analysis of clothing, we propose a dy-
namic deformation field (DDF). Our new deformation field
consists of a non-rigid dynamic deformation field and an
initialization-based skinning transformation field. Given a
monocular video depicting a clothed person in free mo-
tion, we generate per-frame SMPL (Loper et al. 2015) pose
parameters {θi|i = 1, ..., N} using PyMAF (Zhang et al.
2021).

Non-Rigid Dynamic Deformation Field. According to
dynamics, the motion of an object is related to the forces on
it. Physics-based cloth simulation analyzes the internal and
external forces acting on each vertex. We primarily address
the free motion of the human in nature scenes. In this case,
the forces acting on each vertex include gravity, traction, and
friction resulting from human movement, as well as air resis-
tance. In addition, internal force affects each other between
the vertices. To simplify the representation, we compute the
total force acting on a clothing vertex at time ti using vector
operations. According to Newton’s second law, F = ma,
the traction acting on a vertex at time ti can be expressed as
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Figure 3: Forces on the clothing. We represent clothing as a
combination of many triangular surfaces. Blue points on the
triangles are points of the garment geometry, and red points
indicate human joints. (a) shows the Ftraction that the point
x receives from one of the joints. This force can be directly
represented as a line from point x to the joint. (b) shows the
state of the spring model in canonical space. We can simply
understand that the green spring is in a relaxed state. In this
case, the spring length sets the default to the original length.
(c) shows the spring model in the current space. The red
spring is stretched due to human movement.

:

Ftractioni = mai = m
∆vi
∆t

= m
∆si
∆t2

= m
xi+1 − xi−1

2∆t2
, (2)

where ai is the instantaneous acceleration and vi is the in-
stantaneous velocity at the current frame. The mass m and
time step ∆t remain constant in a monocular video, thus
the force acting on a vertex at time ti is determined by
xi+1–xi−1. Since the traction force is mainly generated by
human motion, xi+1–xi−1can be expressed as a positive
correlation of Ji+1–Ji−1. Ji+1–Ji−1 is the distance between
the human joints of the subsequent video frames. Therefore,
the traction can be presented as follows:

Ftractioni
∝ (Ji+1–Ji−1). (3)

Once the pose θ and translation T are available, the joints J
can be known. So the traction is:

Ftractioni ∝ (θi+1, Ti+1, θi−1, Ti−1). (4)

The internal forces of the clothing primarily utilize a
spring model, following Hooke’s law Fspring = −k∆x. To
calculate the internal force, we need to get ∆x, which rep-
resents the spring’s length change. As Figure 3 shows, in a
macroscopic view, we use the vertex and human joints as
the two ends of the spring. We assume the clothed human
in canonical space represents an equilibrium state. So the
initial length L of the spring can be viewed as the distance
between vertices and force points, which can be considered
as joints. Therefore, the displacement ∆xi of frame i is:

∆xi = xi − L

= (xi − Ji)− (xc − Jc)

= (xi − xc)− (Ji − Jc). (5)

Since xi is the part we need to solve, the formula can be
presented as:

Fspringi ∝ (xc, θi, Ti, θc, Tc), (6)

where xi is the vertex position at frame i, xc is the vertex
position in the canonical space.

Due to the uncontrollable scene, environmental factors
such as wind may also affect the motion of the vertices.
Therefore, a learnable variable φ is added as the effect of
the environment on the vertices. As a result, we can get:

Fi ∝ (xc, θi+1, Ti+1, θi−1, Ti−1, θi, Ti, θc, Tc, φ). (7)

We represent the non-rigid deformation of each frame
with a learnable MLP. The point x′ deformed by non-rigid
deformation field can be represented as:

x′ = Fi(xc, θi+1, Ti+1, θi−1, Ti−1, θi, Ti, θc, Tc, φ). (8)

Skinning Transformation Field. Given the i-th frame’s
pose parameter θi, we define a canonical-to-current space
skinning transformation field. Following prior works (Jiang
et al. 2022a; Lin et al. 2022b), we propagate the SMPL
skinning weights in canonical space to get initial skinning
weights of arbitrary topologies. Specifically, we find the 30
nearest vertices on the SMPL mesh in canonical space for
each point and average their skinning weights with IDW (in-
verse distance weight) as the initial weight.

Though using the initial skinning weights method to pro-
vide a good beginning, we still need to optimize them for the
current subject. Similar to HumanNeRF (Weng et al. 2022),
we employ a CNN to learn the weight offsets instead of solv-
ing for the entire set of skinning weights:

w = softmax(log(winit) + CNN(x′; z)), (9)

which can achieve faster and more accurate weight opti-
mization.

We use PyMAF (Zhang et al. 2021) to extract SMPL pa-
rameters from images. PyMAF leverages a feature pyramid
and rectifies the predicted parameters explicitly based on the
mesh-image alignment status. Although PyMAF improves
the alignment between meshes and images on 2D planes, it
struggles to tackle the depth ambiguity problem in 3D space.
To address this, we introduce an additional network to opti-
mize the human pose. Similar to the skinning weight opti-
mization, we use an MLP to obtain a relative value for pose
optimization:

∆Ω = MLPθ(Ω), (10)
where Ω = (ω0, ..., ωk) are local joint rotations represented
as axis-angle vectors ωi. We keep the joints J fixed and
optimize the relative updates of the joint angles, ∆Ω =
(∆ω0, ...,∆ωk). We then apply these updates to Ω to obtain
the updated rotation vectors:

pose(θ) = (J,∆Ω⊗ Ω). (11)

Finally, the skinning deformation is:

xi = W (x′, pose(θ), w). (12)

Delayed Optimization
During the optimization of the overall network, there are
several modules and a lot of learnable parameters. As a re-
sult, the modules are not decoupled from each other. This
leads to suboptimal learning outcomes for each module. In-
spired by HumanNeRF (Weng et al. 2022), we deal with this



issue by managing the overall optimization process. The op-
timizations for pose and skinning weights are disabled at the
beginning of training, and they are gradually enabled when
the non-rigid deformation network acquires a certain level
of representation capacity. This approach can effectively al-
leviate the burden of network learning. Furthermore, pose
optimization is only applied in the skinning transformation.
Applying pose optimization in non-rigid transformation will
increase the complexity of the non-rigid network and pro-
duce poor results.

Implicit Rendering Network
To obtain accurate geometry, we use surface rendering in-
stead of volume rendering. While volume rendering can pro-
duce good rendering results, it generally yields poor geom-
etry. Following the approach of IDR (Yariv et al. 2020), we
input surface point, normal, view direction, and global geo-
metric features into an MLP to estimate the colors of surface
points. The obtained colors of points fully consider BRDF
and global illumination and approximate the surface light
field.

We only train the color field in canonical space to reduce
memory usage and parameter amount. Followed by SelfRe-
con (Jiang et al. 2022a), we sample pixels within the ground
truth mask and utilize non-rigid ray casting to obtain the cor-
responding point xc in canonical space (see supplementary).
In the meantime, we compute its normal nxc

= ▽f(xc) by
gradient calculation. Given the camera information, we can
determine the viewing direction v of each surface point xd in
the current space. By using the Jacobian matrix Jxd

(xc) of
the deformation point xi = W (Fi(xc)), we can transform v
to the viewing direction vc of xc in canonical space. Finally,
we use an MLP to compute the color Lxc of xc, formulated
as:

Lxc = MLPcolor(xc, nxc , vxc). (13)

Loss Function
During the computation of the explicit loss, we regard the
canonical mesh T as an optimizable variable and compute its
gradient together with the whole network. Then in the con-
sistency loss, we connect explicit variations with the implicit
representation. Explicit loss includes mask loss, while im-
plicit losses include color loss, normal loss, and the Eikonal
loss.

Mask Loss. We use the point cloud-based renderer in Py-
Torch3D and camera to render out the mask O′

i of the i-th
frame mesh, and target mask Oi to calculate IoU loss:

lossIoU = 1−
∥O′

i ⊗Oi∥1
∥O′

i ⊕Oi −O′
i ⊗Oi∥1

, (14)

where ⊗ and ⊕ are the operators that perform element-wise
product and sum respectively.

Normal loss. We use the normal map predicted by PI-
FuHD (Saito et al. 2020) o refine the geometry. By gradient
calculation, we can easily get normal nxc

. In addition, we
need to convert the corresponding predicted normal N from
current space to canonical space, which can be calculated
using Jxd

(xc)
T . Therefore, there is a normal loss:

lossnorm =
∥∥nxc

− unit(Jxd
(xc)

TN)
∥∥
2
, (15)

Subject Normal MAE∗ ↓ Mask IoU ↑
SelfRecon Ours SelfRecon Ours

Antonia 11.19 6.14 0.887 0.904
Magdalena 11.40 7.69 0.901 0.912
FranziRed 9.32 5.29 0.735 0.912

LCJ 11.38 7.63 0.884 0.910
LYZ 20.71 8.00 0.831 0.919
ZJ 15.74 9.46 0.819 0.906

Table 1: Quantitative comparison on geometry. “↑” indicates
the higher the better, and “↓” indicates the lower the bet-
ter. Normal MAE∗ = Normal MAE ×103 . “Antonia” and
“Magdalena” are from DeepCap Dataset (Habermann et al.
2020), “FranziRed” is from DynaCap dataset (Habermann
et al. 2021), and others are self-captured real sequences.

where unit(·) means to normalize the vector.
Color loss. We minimize the color difference between the

rendered image Li and the input frame Ii as:

losscolor = |Li − Ii| . (16)

Eikonal Loss. We adopt the regular loss of IGR (Gropp
et al. 2020) to make f to be sign distance function:

losseik = (∥▽f(xc)∥2 − 1)2. (17)

Finally, the implicit loss can be represented as:

LossImplicit = losscolor + losseik + λlossnorm, (18)

where λ = 0.1.
Consistency Loss. After explicit iteration, the canonical

mesh T is updated to T̂ . To maintain consistent between the
implicit SDF f and the updated explicit mesh T̂ during im-
plicit iteration, we employ a consistency loss from SelfRe-
con (Jiang et al. 2022a):

Losscons =
1

|T̂ |

∑
t̂∈T̂

∣∣f(t̂)∣∣ (19)

where t̂ is a vertex coordinate of T̂ . Intuitively, the loss de-
mands alignment between T̂ and the implicit surface.

Experiments
We evaluate our method on the DeepCap dataset (Haber-
mann et al. 2020) and our own captured data (LCJ, LYZ and
ZJ). Our data is captured in the wild with a static CANON
EOS 6D MARK II camera. We fix the focal length and es-
timate the camera intrinsics using COLMAP. For each sub-
ject, we use around 200-300 images for optimization. The
optimization takes 200 epochs (about 48 hours) on a single
NVIDIA RTX 3090 GPU.

Quantitative Evaluation
We utilize normal MAE (Mean Absolute Error) and mask
IoU (Intersection over Union) as evaluation metrics of ge-
ometry. The results are presented in Table 1. We estimate



Figure 4: Geometric qualitative comparison. From top to bottom: “Antonia” and “Magdalena” from DeepCap Dataset (Haber-
mann et al. 2020), “FranziRed” from DynaCap dataset (Habermann et al. 2021), and others from self-captured real sequences.

the normal from PIFuHD (Saito et al. 2020) and the mask
from RVM (Lin et al. 2022a) as ground truth. Table 1 shows
that our reconstructed geometry outperforms SelfRecon in
terms of both silhouettes and normal.

We report SSIM and PSNR to measure rendering qual-
ity. Results in Table 2 demonstrate that our method achieves
higher accuracy than other methods under most metrics. Our
method outperforms SelfRecon (Jiang et al. 2022a) and Hu-
manNeRF (Weng et al. 2022) in all metrics. Compared to
the state-of-the-art method Vid2Avatar (Guo et al. 2023), our
approach outperforms in loose clothing with a large wiggle
amplitude.

Qualitative Evaluation
We also conduct qualitative comparisons with SelfRecon
(Jiang et al. 2022a), HumanNeRF (Weng et al. 2022),
SCARF (Feng et al. 2022) and Vid2Avatar (Guo et al.
2023), and hybrid representation-based method SCARF on
the DeepCap Dataset (Habermann et al. 2020) and our own
collected real sequences. More results see in supplementary.

SelfRecon tends to produce physically incorrect body
reconstructions. Due to the inherent limitations of NeRF,
HumanNeRF and SCARF based on NeRF tends to recon-
struct noisy geometry. SCARF proposes a hybrid model
combining a mesh-based body with a NeRF-based clothing.
Although it obtains relatively clean bodies, it reconstructs
clothing with a lot of noise. This may be due to its inabil-
ity to capture clothing dynamics in free motion. Following
HumanNeRF and NeuMan (Jiang et al. 2022b), Vid2Avatar
reconstructs avatar via self-supervised scene decomposition.
Though Vid2Avatar performs well on garments that are
topologically similar to the body, it still fails to reconstruct
loose clothing. It struggles to reconstruct loose-fitting cloth-
ing due to their fast dynamics. In contrast, our method gen-
erates complete and accurate results regardless of whether
the clothing is tight or loose-fitting. More results see in sup-
plementary.



Subject PSNR ↑ SSIM ↑
SelfRecon HumanNeRF Vid2Avatar Ours SelfRecon HumanNeRF Vid2Avatar Ours

Antonia 34.98 31.87 31.41 37.98 0.987 0.978 0.990 0.991
Magdalena 36.07 30.14 31.79 39.77 0.987 0.974 0.990 0.992
FranziRed 31.92 32.48 32.04 34.09 0.984 0.988 0.990 0.991

LCJ 29.17 31.62 34.13 34.43 0.989 0.986 0.991 0.991
LYZ 23.04 31.69 32.49 38.14 0.966 0.981 0.987 0.987
ZJ 31.50 32.00 35.70 36.94 0.979 0.984 0.989 0.986

Table 2: Quantitative comparison on rendering. “↑” indicates the higher the better, and “↓” indicates the lower the better. “Anto-
nia” and “Magdalena” are from DeepCap Dataset (Habermann et al. 2020), “FranziRed” is from DynaCap dataset (Habermann
et al. 2021), and others are self-captured real sequences.

Normal MAE∗ ↓ IoU ↑ PSNR ↑ SSIM ↑
Antonia Magdalena Lab∗ Antonia Magdalena Lab∗ Antonia Magdalena Lab∗ Antonia Magdalena Lab∗

baseline 11.19 11.40 18.90 0.887 0.901 0.858 34.98 36.07 26.63 0.987 0.987 0.978
baseline+initialization 6.44 8.67 10.65 0.900 0.905 0.904 37.42 37.94 32.03 0.985 0.983 0.982

baseline+initialization+dynamic non-rigid 6.03 7.93 10.22 0.903 0.910 0.916 37.68 38.80 33.31 0.985 0.984 0.983
Ours (w/o dynamic non-rigid) 6.65 8.83 10.90 0.895 0.904 0.903 37.01 37.96 32.03 0.985 0.983 0.982

Ours (full model) 6.14 7.69 10.22 0.904 0.912 0.921 37.98 39.77 33.81 0.990 0.992 0.985

Table 3: Ablation study of geometry and rendering.“↑” indicates the higher the better, and “↓” indicates the lower the better.
Normal MAE∗ = Normal MAE ×103 . We compute averages over 3 sequences of Lab Dataset. Lab Dataset contains self-
captured video clips. “Ours (w/o dynamic non-rigid)” means we use another non-rigid deformation field with only frame index.
Our full model contains initialization, dynamic non-rigid and optimized skinning deformation fields, as well as a pose decoder.

(e) input (d) w/o  dynamics 
non-rigid field

(f) with dynamics
non-rigid field

(a) input (b) with  SMPL 
initialization

(c) with Econ 
initialization

Figure 5: Econ initialization gives the correct topology for
the clothed human (b). SMPL initialization cannot expand
to clothes that are not similar to the body’s topology (c). The
dynamics non-rigid deformation improves clothing align-
ment and shape (e-f).

Ablation Study
Effect of SMPL Pose Estimation Method. We replace
PyMAF (Zhang et al. 2021) with a slightly non-robust
method called SPIN (Kolotouros et al. 2019), which is com-
pared in the PyMAF work. Table 4 shows that our method
can still get stable accurate results with SPIN. As we em-
ploy a pose decoder to refine poses and apply a skeleton
smoothness loss to maintain low-frequency joint motion tra-
jectories, these measures decrease our sensitivity to SMPL
poses.

Normal MAE∗ ↓ IoU ↑ PSNR ↑ SSIM ↑
FranziRed(PyMAF) 5.29 0.912 34.09 0.991

FranziRed(SPIN) 5.31 0.912 34.04 0.991

Table 4: Ablation study of SMPL pose estimation method.

Effect of Initialization. To reconstruct human bodies
wearing various types of clothing, we select a frame from
the video and employ ECON (Xiu et al. 2023) to derive an
initial geometric. Table 3 shows the ablation experiments us-
ing initialization from ECON and SMPL initialization. As
demonstrated in the results, when using SMPL initialization,
even in conjunction with SDF-based implicit method, it is
prone to getting stuck in local optima and cannot generate
loose-fitting clothing. Figure 5 shows that the initialization
of Econ lays the foundation for avatar reconstruction. Effec-
tive initialization gives the correct topology and facilitates
network learning and optimization.

Effect of Dynamic Non-Rigid Deformation Field. In Ta-
ble 3, we observe that the dynamic non-rigid field can bet-
ter capture the clothing movement, especially in the case of
loose-fitting clothing. It proves the validity of including the
analysis of forces in non-rigid deformation field. Figure 5
shows the importance of including dynamics non-rigid mo-
tion visually. To verify the force formulation in the dynamic
non-rigid field, We conduct ablation study between dynamic
non-rigid MLP and a non-rigid MLP with only frame index
in Table 3.

Effect of Optimized Skinning Deformation Field. In Ta-
ble 3, we find that using weights fine-tune can get more cor-
rect geometry and improve the metrics to some extent. In a
word, dynamics non-rigid alone is enough for significant im-
provement. Adding LBS fine-tuning provides further gains.
We also conduct ablation experiments on the pose decoder
and delayed optimization (see supplementary).



Conclusion and Discussion
In this paper, we have presented a method named DLCA-
Recon to reconstruct 3D avatars from monocular in-the-wild
videos. By employing force analysis in non-rigid deforma-
tions and optimizing skinning weights through initialization,
we can effectively capture the free motion of bodies and
clothes. Managing the overall network optimization process
helps mitigate the coupling between modules to a certain
extent. Without requirement of scans as supervision, DLCA-
Recon can reconstruct high-fidelity humans dressed in a va-
riety of clothing styles from monocular videos in the wild.

DLCA-Recon still has several limitations. First, due to
employing surface rendering loss, our method is limited by
the accuracy of the ground truth mask. Second, current ap-
proaches rely on predicted normal maps to improve geomet-
ric details. Lastly, the geometry obtained from 2D supervi-
sion is still inferior to 3D supervision. We will address these
issues in the future.
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