
CGI2023 manuscript No.
(will be inserted by the editor)

Monocular Human Depth Estimation with 3D Motion Flow
and Surface Normals

Yuanzhen Li · Fei Luo* · Chunxia Xiao*

Abstract We propose a novel monocular human depth

estimation method using video sequences as training

data. We jointly train the depth and 3D motion flow

networks with photometric and 3D geometric consis-

tency constraints. Instead of depth ground truth, we

take the surface normal as the pseudo label to super-

vise the depth network learning. The estimated depth

may exist texture copy artifact when the clothes on

the human body have patterns and text marks (non-

dominant color). Thus, we also propose an approach to

alleviate the texture copy problem by estimating and

adjusting the color of non-dominant color areas. Ex-

tensive experiments on public datasets and the Inter-

net have been conducted. The comparison results prove

that our method can produce competitive human depth

estimation and has better generalization ability than

the-state-of-art methods.

1 Introduction

Estimating human depth from one or a few 2D images

is very useful for many applications, including AR/VR,

teleconference, and virtual digital human creation in

the recently emerging metaverse. The human body can

be represented with parametric or non-parametric mod-

els. Parametric-based methods usually use the SCAPE

[5] and SMPL [32] to represent the naked body shape,
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Fig. 1 An example of human depth estimation and corre-
sponding mesh from a single image by our method. From left
to right: input image, estimated depth, and the 3D mesh cor-
responding to the depth.

but it is hard for them to create 3D geometric details,

like hair and clothes wrinkles. Non-parametric models

based on depth [19], voxel [14], and implicit function

representation [41] can produce more human details.

Compared to other non-parametric models, depth

information is more convenient to acquire and store.

Some methods [45,19] use neural networks to estimate

human depth from a single image by using depth ground

truth to supervise training. However, high-precision depth

scanners [54] are still not widely available in practice.

Collecting a large amount of depth ground truth for

humans with diverse appearances, clothes, and poses

is challenging. Until now, only a few hundred human-

scanned models have been freely made available in academia

and industries. Thus, the supervised depth estimation

methods are difficult to generalize. Furthermore, the

predicted depth is relative, and it has an unknown scale

and shift with regard to the depth ground truth.

To solve the problem of hard-to-obtain ground truth

data, some methods [8,58,39] use pseudo labels instead

of ground truth data. The surface normal is perpen-

dicular to the surface at a given 3D point, which can



2 Yuanzhen Li et al.

present more fine geometric details. Using the surface

normal to supervise the depth estimation can avoid the

impact of the unknown scale and shift. Therefore, we

use surface normal as the pseudo label to supervise the

depth learning indirectly.

As video data is easier to obtain and more infor-

mation can be learned from consecutive frames, we use

video sequences as the training data. Due to the non-

rigid transformation of human motion, we train one

more 3D motion flow network to enforce the accuracy

of the depth network. Based on the estimated depth

and 3D motion flow, we establish the photometric and

3D geometric consistencies between adjacent frames.

When human clothes exhibit patterns and text marks,

the estimated depth may suffer from the texture copy

problem. We design a linear transformation and image

inpainting approach to alter the pattern and text color

close to the domain color, which could alleviate the tex-

ture copy problem.

In this work, we propose a novel monocular human

depth estimation method by exploiting the surface nor-

mal and 3D motion flow to supervise depth estimation.

Meanwhile, we propose an approach to alleviate the tex-

ture copy problem. We perform quantitative and quali-

tative experimental evaluations and ablation study ex-

periments on various datasets to verify the effectiveness

of our method. In summary, we make the following con-

tributions:

• We propose a novel human depth estimation method

by jointly learning the depth and 3D motion flow.

• Instead of depth ground truth, we propose to use the

surface normal as the pseudo label to supervise the

depth estimation model.

• To alleviate the texture copy artifact, we develop a

color component analysis and color transformation

approach to deal with the colors on clothes.

2 Related Work

2.1 Human Body Reconstruction

In computer graphics, the depth representation is re-

ferred to as the 2.5D model [57]. Depth information

of human is usually used to reconstruct the geomet-

ric surface of the human body [34]. The 3D human

body can be represented by the parametric model or

the non-parametric model. Parametric methods such as

SCAPE [5], SMPL [32], and SMPL-X [37] treat the hu-

man body reconstruction as the determination of the

pose and shape parameters. Although parametric hu-

man body shapes are readily applicable [38,20], the re-

constructed geometry is difficult to represent the fine

details of dressed humans with hair and loose clothes.

Some methods [4,24,25] add residual geometry to para-

metric models. However, those methods are not power-

ful enough for non-rigid clothes reconstruction.

Non-parametric representations can describe the ge-

ometric surface details of dressed humans, such as depth

[45,19], voxel grids representation [14], and implicit func-

tion representation [41,52]. Zheng et al. [61] and Haber-

mann et al. [14] used voxel to reconstruct human shapes.

The voxel grid processing requires intensive memory,

and the results have limited resolution. Saito et al. [41]

used a pixel-aligned implicit function to reconstruct the

3D human from a single image. Afterward, they used

normal maps to improve the 3D geometric details [42]

(PIFuHD). Zheng et al. [60] proposed a method called

PaMIR to improve the robustness of the 3D model with

the SMPL mesh. Xiu et al. [52] proposed a local-feature-

based implicit 3D reconstruction method called ICON

to improve the robustness of human pose estimation.

They used the SMPL to guide normal prediction and re-

gressed the occupancy field. The above methods based

on implicit function representation are computationally

heavy and time-consuming. Feng et al. [9] proposed an

effective and flexible 3D geometry representation of the

Fourier Occupancy Field (FOF) for the monocular real-

time human reconstruction.

Compared to other non-parametric models, depth

is more flexible to integrate other information to recon-

struct the geometric surface. Li et al. [28] utilized the

motion parallax from static scenes to guide the human

depth estimation. Tang et al. [45] proposed a super-

vised human depth estimation method by incorporat-

ing pose and semantic labels. To improve the general-

ization ability of the human depth estimation, Jafarian

and Park [19] proposed a semi-supervised human depth

and normal estimation method. They assumed human

motion to be a local rigid transformation and based

on the DensePose maps [13] to calculate it. DensePose

represents dense correspondence from 2D images to 3D

surface-based representations of the human body, which

regresses part-specific UV coordinates. The DensePose

map has three channels.

Actually, human motion is a non-rigid transforma-

tion when the body is dressed in loose clothes. Thus, we

propose to learn the 3D motion flow of the human be-

tween adjacent frames to establish the photometric and

3D geometry consistency losses. The difference between

our method and the method of Jafarian and Park [19]

are as follows. (1) instead of depth ground truth, we

use the surface normals as the pseudo labels to super-

vise the depth learning. (2) we jointly learn the human

depth and 3D motion flow to establish the photometric

and 3D geometry consistency between adjacent frames.
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2.2 Self-supervised Monocular Depth Estimation

Without needing depth ground truth, self-supervised

monocular depth estimation has extracted a lot of at-

tention. Stereo image pairs and video frames can train

self-supervised depth estimation. Stereo image pair train-

ing utilizes stereo images with a known baseline dis-

tance between the left and right cameras [11,23,26].

Monocular video sequences training jointly estimates

the depth and the camera pose on adjacent frames [62,

12,27,33]. In our human depth estimation, a non-rigid

human moves in front of a fixed camera. We jointly esti-

mate the human depth and 3D motion flow on adjacent

frames.

2.3 Scene Flow

Optical flow represents the motion direction and quan-

tity of a 2D image object movement between two con-

secutive frames [3,56,44]. 3D Scene flow is a three-

dimensional motion field of each point in the scene [48].

The 3D scene flow is widely used in video tracking and

monitoring. According to the type of input data, vari-

ous scene flow estimation methods have been proposed,

such as stereo images [17,43], 3D point clouds [51,50,

31], or a sequence of RGB-D images [46,18,53]. Huguet

and Devernay [17] proposed a traditional method that

used standard variational formulations and energy min-

imization to estimate scene flow from stereo images.

Wei et al. [51] proposed a point-voxel recurrent field

transform method to estimate scene flow from point

clouds. Hur and Roth [18] proposed a monocular scene

flow and depth estimation method with a single neural

network to estimate the depth and 3D motion flow and

adopted self-supervised learning with 3D loss functions.

Li et al. [29] estimated a scene flow field to design

a dynamic scenes neural radiance field framework [35].

Zhang et al. [59] jointly trained a scene flow network

and a pre-trained depth network in each video fragment

to generate temporally consistent depth for arbitrarily

moving objects.

3 Method

As shown in Fig. 1, given a single image of dressed hu-

man I, our goal is to estimate the human depth D.

The overview of our method is shown in Fig. 2, which

consists of two sub-modules: depth estimation and 3D

motion flow estimation. The depth estimation network

takes a single image of a dressed human as input and

predicts the human depth. The 3D motion flow estima-

tion network takes color images {Ii, Ij} and DensePose

maps {Si, Sj} of two adjacent frames as input and pre-

dicts the human 3D motion flow Fi→j . Based on the

estimated depth and 3D motion flow, we establish the

photometric and 3D geometric consistency constraints.

At the same time, we use the surface normal as the

pseudo label to supervise the depth estimation network

learning. In the inference stage, the two networks are

applied independently.

When the clothes on the body have patterns and

text marks, it could lead to the texture copy problem

on depth estimation. Based on the connected domain

size of the marks, we design a linear transformation and

image inpainting method to reduce the color difference,

and alleviate the texture copy problem (see Fig. 5). In

the following subsections, we will describe the human

depth estimation method and the approach to alleviate

the texture copy problem.

3.1 Human Depth Estimation

The overview of our human depth estimation method

is shown in Fig. 2. The depth estimation network Gd

takes the color image Ii as input and predicts the hu-

man depth Di. The 3D motion flow estimation network

Gf takes the two frames’ color image {Ii, Ij} and the

DensePose {Si, Sj} as input and predicts the 3D mo-

tion flow Fi→j of the human. Based on the estimated

3D motion flow and depth, we establish the photometric

and 3D geometric consistency constraints. Meanwhile,

we use the normal as the pseudo label instead of depth

information to supervise the human depth estimation

network learning.

Our objective loss for optimizing the depth estima-

tion network Gd and the 3D motion flow estimation

network Gf consisting of five terms: normal depth con-

sistency loss Ln, photometric reprojection loss Lc, 3D

geometric consistency loss Lg, depth smoothness loss

Ls, and 3D flow loss Lf . Subsequently, we will detailedly

describe each loss term.
Normal depth consistency loss Surface normal

N(x) of a 2D pixel coordinate x is the curvature that
is perpendicular to the tangential plane of the corre-
sponding 3D point P (x):

N(x) =

(
∂P (x)

∂x
×

∂P (x)

∂y

)
/

(∥∥∥∥∂P (x)

∂x

∥∥∥∥×
∥∥∥∥∂P (x)

∂y

∥∥∥∥) , (1)

where P (x) = D(x)K−1x̂, x̂ is the 2D homogeneous

coordinate of pixel x. The intrinsic parameters matrix

of the camera K ∈ R3×3 is calibrated in our experi-

ment. We constrain the geometric consistency between

the pseudo labeled surface normal N and the derived

surface normal Ñ from the predicted depth D in Eq.
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Depth network

Motion flow network

Loss function
Normal depth consistency loss 
Photometric reprojection loss 
3D geometric consistency loss

Fig. 2 Overview of our training framework. It consists of two major modules. The depth estimation network takes a color frame
Ii as input and predicts the depth Di. The 3D motion flow network takes two adjacent frames {Ii, Ij} and the corresponding
DensePose {Si, Sj} as input and predicts the human 3D motion flow Fi→j . Based on the estimated depth {Di, Dj} and 3D
motion flow Fi→j , we establish the photometric and 3D geometric consistency constraints to supervise the two networks.
Meanwhile, the precomputed surface normal is used as the pseudo label to supervise the depth network learning.

(1):

Ln =
1

k

∑
x∈I

cos−1

(
NT(x)Ñ(x)

∥N(x)∥ × ||Ñ(x)||

)
, (2)

where k is the number of pixels. In our experiment, we

use the estimated surface normal from method [19] as

the pseudo label N .

Photometric reprojection loss We assume that

the illumination information is constant in all trained

video data. The photometric reprojection loss Lc pe-

nalizes the photometric difference between the target

frame Ii and the reconstructed target frame Ij→i. The

reconstructed image Ij→i is synthesized from the ref-

erence frame Ij , the predicted depth Di, and the 3D

motion flow Fi→j . We back-project each pixel x on the

target frame Ii into 3D space point Pi(x), and trans-

late it to the 3D point Pi→j(x) corresponding to the

reference frame Ij with the estimated 3D motion flow:

Pi→j(x) = Pi(x) + Fi→j(x). (3)

The 3D point Pi→j(x) is projected into the image plane:

x′ = KPi→j(x). If the depth Di and 3D motion flow

Fi→j are accurate, the pixels x and x′ have the same

color. We use the bilinear interpolation to sample the

reference frame Ij and synthesize the reconstructed im-

age Ij→i. Inspired by [11], we use a combination of the

L1 and single scale SSIM [49] term as our photometric

reprojection loss Lc:

Lc =
1

k

∑
x∈I

µ

2
(1− SSIM(Ii(x), Ij→i(x)))+

(1− µ) ∥Ii(x)− Ij→i(x)∥1 ,
(4)

where ∥.∥1 denotes the L1 norm, µ is set to 0.85, and

SSIM() denotes the structure similarity index measure

which is computed over a 3× 3 block filter.

3D geometric consistency loss The 3D geomet-

ric consistency loss Lg penalizes the difference between

the translated 3D point Pi→j(x) from the target frame

Ii and the 3D point Pj(x
′) corresponding to the matched

pixel point x′ in the reference frame Ij :

Lg =
1

k

∑
x∈I

∥Pi→j(x)− Pj(x
′)∥22 , (5)

where the matched 3D point Pj(x
′) = Dj(x

′)K−1x̂′.

Fig. 3 shows the photometric reprojection loss Lc and

3D geometric consistency loss Lg.

Depth smoothness loss As in [11], we use edge-

aware depth smoothness loss weighted by image gradi-

ents to encourage locally smooth constraint of depth D:

Ls =
1

k

∑
x∈I

∣∣∣∣∂D(x)

∂x

∣∣∣∣ e−∥ ∂I(x)
∂x ∥ +

∣∣∣∣∂D(x)

∂y

∣∣∣∣ e−∥ ∂I(x)
∂y ∥.

(6)

3D flow loss We penalize the difference between

the 3D flow Fi→j and the 2D flow from the correspond-

ing DensePose maps. We first calculate the 2D flow
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Fig. 3 The photometric reprojection loss Lc and 3D geo-
metric consistency loss Lg. The pixel x in image Ii is back-
projected into a 3D point Pi(x) using the predicted depth
Di(x). The 3D points Pi(x) is translated to point Pi→j(x)
at time j using the predicted 3D motion flow Fi→j(x). In
image space, the translated point Pi→j(x) is projected to 2D
point x′. The pixel x′ is back-projected into the 3D point
Pj(x′) using the predicted depth Dj(x). The photometric
consistency Lc penalizes the color difference between Ii(x)
and Ij(x′). The 3D geometric consistency Lg penalizes the
Euclidean distance between the translated 3D point Pi→j(x)
and the matched 3D point Pj(x′). The black triangle repre-
sents the camera position.

F 2D
i→j using the DensePose maps Si and Sj . Second, we

project the estimated 3D motion flow Fi→j into 2D flow

F̃ 2D
i→j in 2D image space. Finally, we use the Euclidean

distance between the 2D flow F 2D
i→j and the projected

2D flow F̃ 2D
i→j as the 3D flow loss:

Lf =
1

k

∑
x∈I

∥∥∥F 2D
i→j(x)− F̃ 2D

i→j(x)
∥∥∥2
2
. (7)

To sum up, the total loss function is as follows:

Lloss = Ln + λcLc + λgLg + λsLs + λfLf . (8)

The hyper-parameters λc, λg, λs, and λf control the rel-

ative weights of the different terms. In our experiment,

we set λc = 0.3, λg = 0.5, λs = 0.1, and λf = 0.1.

3.2 Network Details

Depth network We use the stacked hourglass network

[36] as the backbone of the depth estimation network

Gd. Jafarian and Park [19] also used it as their depth

estimation network. The difference between ours and

theirs is that our network does not directly output a

continuous depth. The output of our depth network is

Attention Correlation

Fig. 4 The 3D motion flow network. It takes a variant of
U-Net using the residual blocks in the encoder and decoder
with skip connections as the backbone framework of the 3D
motion flow Gf .

pixel-wise disparity probability, called discrete dispar-

ity volume [27]. Concretely, the depth network outputs

anM channel disparity probability volume {V1, ..., VM}
with M disparity layers. The corresponding disparity

value dm in the disparity layer m (m = 1, 2, ...,M) is:

dm = dmin +∆d × (m− 1), (9)

where dmin and ∆d are the minimum disparity value

and disparity interval. In our experimentM = 90, dmin =

0.001, and ∆d = 0.01. A depth-wise softmax opera-

tion processes probability volume Vm to produce an

actual probability map for each disparity layer V d
m =

softmax(Vm). The disparity by weighting the sum of

the disparity probability volume:

σ =

M∑
m=1

dmV d
m. (10)

We set the minimum depth as 2.0 and maximum depth

as 4.0, and convert the disparity σ to the depth [12].

Motion flow network As shown in Fig. 4, we take

a variant of U-Net [40] using the residual blocks [16] in

the encoder and decoder with skip connections as the

backbone framework of the 3D motion flow Gf . We in-

put the color image and DensePose {Ii, Si}, {Ij , Sj}
into the ResNet50 network and it outputs three fea-

ture layers. We use a self-attention module [47] to learn

correlation features of the global context in the last fea-

tures layer. We concatenate the two self-attention fea-

tures and yield the low-resolution 3D motion flow by

a convolutional layer with a filter. The low-resolution

3D motion flow is the first step of the multi-scale de-

coder. We adopt the feature correlation layer for the

two additional stages to make the network stronger

regulation [18]. The feature correlation is based on a

matching score to quantize the feature similarity be-

tween images. We use a bilinear up-sampling operator

to up-sample the low-resolution features, concatenate

with the encoded features and correlation features as

the next layers input, and output the high-resolution

3D motion flow.
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3.3 Texture Copy

When the clothes exhibit patterns and text marks, it is

possible to lead to texture copy phenomenon on depth

estimation or 3D human reconstruction (see Fig. 6 and

Fig. 7). We define the above areas as non-dominant

color areas. We propose a method to transfer the non-

dominant color to be similar to the dominant color,

aiming to alleviate the texture copy. It was noted that

we need to retain the wrinkle details of clothes when

the non-dominant color is transferred.

As shown in Fig. 5, our method is based on a lin-

ear color transformation operator and image inpaint-

ing algorithm. First, we use the body parsing algo-

rithm [30] to segment the clothes. Second, we divide

the colors of the clothes into H groups and utilize the

k-means clustering algorithm [22] to extract H areas

with their central color values C̄t
h, where t = {1, 2, 3}

and h = {0, 1, ...,H − 1}. The central color values C̄t
h

are normalization (0,1). The maximum area is the dom-

inant color area C0 with the central color value C̄0. For

one of the three color channels t, when the difference

between the central value C̄t
h of the area Ch and the

central values C̄t
0 of the dominant color is more than a

threshold ϑ:

|C̄t
0 − C̄t

h| > ϑ, (11)

the area Ch is the non-dominant color area, and its

color needs to be transferred. In our experiment, we

set ϑ = 0.1. Based on the constraint, we extract non-

dominant color area masks. To avoid boundary traces

in color transformation, we use the guided filter [15] to

dilate the masks.

Linear color
transformation

Image inpainting

Non-dominant 
colors mask

Condition 1

Fig. 5 Texture copy alleviation. First, we use the k-means
clustering algorithm to extract non-dominant color areas.
Then, we design a linear transformation and image inpaint-
ing algorithm to alter their color close to the dominant color
based on the connected domain size of masks, respectively.

Based on the connected domain size of the non-

dominant color mask, we design a linear color transfor-

mation operator and image inpainting to transfer the

Input 3D mesh Mask Inpainting 3D mesh

Fig. 6 Texture copy alleviation by the image inpainting.
From left to right are the source image, the 3D mesh of the
source image, the non-dominant color mask, the inpainted
image, and the 3D mesh of the inpainted image.

Input         3D mesh     Mask    Color transformation  Filtering      3D mesh

Fig. 7 Texture copy alleviation by the color transformation.
From left to right are the source image, the 3D mesh of the
source image,the non-dominant color mask, the color trans-
formed image, the filtered image, and the 3D mesh of the
filtered image.

non-dominant color, respectively. When the connected

domain of the non-dominant color mask is less than a

threshold, we use the image inpainting algorithm [7] to

fill the non-dominant color area (see Fig. 6).

When the connected domain of the non-dominant

color mask is greater than a threshold, the wrinkle de-

tails of the clothes could be damaged when we use the

image inpainting algorithm. Thus, we design a linear

operator to transfer the color of the non-dominant color

area to be close to the dominant color (see Fig. 7). First,

we compute the mean between the dominant color cen-

tral value and the non-dominant color central value:

C̄0h = (C̄0 + C̄h)/2. (12)

Then, the color Ch of the non-dominant color area sub-

tracts the mean value C̄0h as its new color:

Ch = |Ch − C̄0h|. (13)

The new color Ch can be close to the dominant color

value and retain the wrinkle details of the clothes. Fi-

nally, we use the image filter algorithm [10] to smooth

the edge area of the mask. Fig. 6 and Fig. 7 demonstrate

that the images pre-processed by our method have less

texture copy problem compared to the source results.
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4 Experiments

To validate the effectiveness of our human depth esti-

mation method, we compare it with existing methods

and conduct ablation study experiments. We implement

our method in the TensorFlow framework with a single

NVIDIA GeForce RTX 3090Ti GPU. The batch size is

set to 8, and the number of epochs is 200. We use the

Adam Optimizer [21] with α = 0.0001, β1 = 0.9, and

β2 = 0.999 to train.

4.1 Training Datasets and Evaluation Metrics

Training dataset Our training dataset is taken from

Jafarian and Park [19], which consists of more than 300

sequences of dance videos shared on the TikTok social

media mobile platform. We remove images with blurred

human motion, crop and resize our training images to

256× 256, utilize the method [1] to extract the human

mask, and utilize the method [13] to obtain the corre-

sponding DensePose map. Jafarian and Park [19] have

calibrated the intrinsic parameters matrix of the cam-

era K corresponding to the training dataset.

Evaluation metrics Similar to Jafarian and Park

[19], we evaluate the performance of our human depth

estimation method by measuring the accuracy of the

predicted depth and the corresponding 3D point cloud.

We use the mean squared error as a metric for the depth

error. We reconstruct the 3D point cloud from the es-

timated depth and compute the mean square error as

a reconstruction error. Due to the influence of depth

scale and viewpoint, the two sets of corresponding 3D

point cloud need to be aligned. Therefore, we estimate

a relative rotation and translation between two sets of

corresponding 3D point clouds based on least-squares

[6]. The estimated point cloud is translated to the me-

dian of ground truth and scaled to match the minimum-

maximum point cloud distance [2]. At the same time,

we also compare the accuracy at different error thresh-

olds, i.e., the percentage of pixels with an error smaller

than some thresholds.

4.2 Quantitative and Qualitative Evaluation

Quantitative evaluation We quantitatively evaluate

our human depth estimation method on Tang et al.

[45] and THuman2.0 [55] datasets. Tang et al. provided

an RGBD dataset with 25 subjects, and we randomly

choose around 3000 frames as the test data. THuman2.0

dataset consists of 526 3D human models with texture,

and we use a ray-tracing algorithm to render RGBD

images on ten camera poses as our test data.

We compare our method with the state-of-the-art

methods [19,45,42,60,52,9], and the above models are

not retrained. The compared methods can be catego-

rized into human depth estimation [45,19] and non-

parametric human shape recovery [42,60,52,9]. The hu-

man shape recovery methods PIFuHD [42], PaMIR [60],

ICON [52], and FOF [9] predict implicit function rep-

resentation containing the back side 3D surface of a

human body from a single image. We only compare the

error of the input image region. We use a ray-tracing

algorithm to identify the front surface and render the

corresponding depth.

Table 1 and Table 2 report the quantitative compar-

ison results. The quantitative results of our method are

stable on two test datasets. Even though the compared

methods use depth ground truth as the supervised in-

formation, our method produces a competitive result

without depth ground truth. The quantitative results

of our method and method [19] are quite close. How-

ever, the network input of our method is a single image,

and we do not need ground truth depth to supervise.

From the two tables, our method is effective.

Qualitative evaluation We qualitatively evaluate

our depth estimation method on the following datasets:

the above two quantitative evaluation datasets, the Tik-

Tok dataset (not in our training dataset), captured by

a smartphone and from the Internet. We present the

qualitatively compared results in Fig. 8, 9, 10, and 11.

We only pre-process the second input image of Fig. 10,

with the proposed linear color transformation to alter

the non-dominant color.

As shown in Fig. 8, Tang et al. [45] can estimate a

good depth on Tang et al. dataset. In contrast, the qual-

itative results are poor on other datasets (see Fig. 9-Fig.

11). In Fig. 9, the above non-parametric human shape

recovery methods can produce good results because the

dataset belongs to their training dataset. As shown in

Fig. 10 and Fig. 11, when the human is not complete

in the input image, the predicted human shape eas-

ily produces a distortion by PaMIR [60] and FOF [9].

As show in Fig. 8-Fig. 11, methods [42,60,9] are sensi-

tive to pose. ICON [52] has good robustness in various

postures, but the predicted human shape still needs to

improve the detailed shape.

As shown in Fig. 10 and Fig. 11, compared with

method [19], our reconstructed surface is more contin-

uous, especially for the human arm. Jafarian and Park

[19] predicted depth appears depth drifting. For our

capturing image and Internet image shown in Fig. 11,

our method has produced better results, which proves

our better generalization ability than the others. Our

method demonstrates a competitive performance in the

quantitative and qualitative evaluations.
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Input    Ground truth  Ours    Jafarian Tang   PIFuHD PaMIR ICON  FOF

Fig. 8 Qualitative comparison with existing methods on Tang et al. dataset [45]. From left to right, these images are the
input image, ground truth, results of our method, Jafarian [19], Tang et al. [45], PIFuHD [42], PaMIR [60], ICON [52], and
FOF [9].

Input  Ground truth  Ours  Jafarian Tang  PIFuHD PaMIR ICON  FOF

Fig. 9 Qualitative comparison with existing methods on THuman2.0 dataset [55]. From left to right, these images are the
input image, ground truth, results of our method, Jafarian [19], Tang et al. [45], PIFuHD [42], PaMIR [60], ICON [52], and
FOF [9].

Input  Ours  Jafarian  Tang  PIFuHD PaMIR  ICON  FOF
Fig. 10 Qualitative comparison with existing methods on TikTok dataset [19]. From left to right, these images are the input
image, results of our method, Jafarian [19], Tang et al. [45], PIFuHD [42], PaMIR [60], ICON [52], and FOF [9].

Input Ours      Jafarian Tang    PIFuHD PaMIR ICON  FOF

Fig. 11 Qualitative comparison with existing methods on our data and the Internet. From left to right, these images are the
input image, results of our method, Jafarian [19], Tang et al. [45], PIFuHD [42], PaMIR [60], ICON [52], and FOF [9].
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Table 1 Quantitative result on the depth estimation. The depth error and the percentage of test samples having an error of
less than three error tolerances (3.0 cm, 4.0 cm, and 5.0 cm) on Tang et al. [45] and THuman2.0 [55] datasets. All the errors
are reported in centimeter (cm). D. error represents the depth error. The best and second-best results are marked as bold and
underline on each dataset, respectively.

Tang et al. dataset THuman2.0 dataset
Method D. error ↓ 3.0 cm ↑ 4.0 cm ↑ 5.0 cm ↑ D. error ↓ 3.0 cm ↑ 4.0 cm ↑ 5.0 cm ↑
Tang et al. [45] 5.1±4.2 38% 63% 77% 10.8±5.2 1% 5% 14%
Jafarian and Park [19] 5.1±3.4 23% 48% 61% 5.4±2.2 15% 34% 53%
Ours 5.2±1.4 25% 51% 65% 5.5±1.6 15% 36% 55%
PIFuHD [42] 6.0 ± 1.4 8% 30% 50% 7.3±1.6 3% 12% 22%
PaMIR [60] 6.1 ± 2.6 7% 28% 47% 7.3±2.5 2% 12% 24%
ICON [52] 5.7±4.2 17% 38% 53% 5.8±3.2 12% 23% 47%
FOF [9] 5.8±2.8 16% 36% 54% 5.7±2.5 14% 25% 49%

Table 2 Quantitative evaluation on surface reconstruction. The reconstruction error and the percentage of test samples
having an error of less than three error tolerances (3.0 cm, 4.0 cm, and 5.0 cm) on Tang et al.[45] and THuman2.0 [55]
datasets. R. error represents the reconstruction error.

Tang et al. dataset THuman2.0 dataset
Method R. error ↓ 3.0 cm ↑ 4.0 cm ↑ 5.0 cm ↑ R. error ↓ 3.0 cm ↑ 4.0 cm ↑ 5.0 cm ↑
Tang et al. [45] 4.9±5.4 42% 65% 76% 8.2±4.1 1% 8% 20%
Jafarian and Park [19] 4.6±3.9 25% 54% 65% 5.0±2.8 26% 53% 69%
Ours 4.8±2.1 27% 57% 68% 4.8±1.0 28% 50% 72%
PIFuHD [42] 5.2±3.4 18% 44% 61% 6.7±2.8 7% 21% 35%
PaMIR [60] 5.3±4.2 17% 40% 60% 6.4±3.6 5% 20% 37%
ICON [52] 4.9±2.2 21% 48% 58% 5.2±2.4 19% 40% 59%
FOF [9] 5.1±2.7 20% 47% 60% 5.1±1.3 18% 42% 62%

Table 3 Ablation study on Tang et al. [45] and THuman2.0 [55] datasets, respectively.

(a) The depth error and the percentage of test samples having an error of less than three error tolerances (3.0 cm, 4.0
cm, and 5.0 cm).

Tang et al. dataset THuman2.0 dataset
Method D. error ↓ 3.0 cm ↑ 4.0 cm ↑ 5.0 cm ↑ D. error ↓ 3.0 cm ↑ 4.0 cm ↑ 5.0 cm ↑
w/o 3D motion flow 6.0±2.1 19% 40% 53% 6.9±3.2 12% 30% 49%
with 3D motion flow 5.2±1.4 25% 51% 65% 5.5±1.6 15% 36% 55%

(b) The reconstruction error and the percentage of test samples having an error of less than three error tolerances (3.0
cm, 4.0 cm, and 5.0 cm).

Tang et al. dataset THuman2.0 dataset
Method R. error ↓ 3.0 cm ↑ 4.0 cm ↑ 5.0 cm ↑ R. error ↓ 3.0 cm ↑ 4.0 cm ↑ 5.0 cm ↑
w/o 3D motion flow 5.4±2.6 23% 50% 54% 5.4±2.6 23% 47% 68%
with 3D motion flow 4.8±2.1 27% 57% 68% 4.8±1.0 28% 50% 72%

4.3 Ablation Study

To validate the effectiveness of the 3D motion flow, we

make an ablation study to omit the 3D motion flow

from our objective (”w/o 3D motion flow”). We evalu-

ate the above combinations on the Tang et al. [45] and

THuman2.0 [55] datasets, respectively. The quantita-

tive comparison result is summarized in Table 3. The

3D motion flow can effectively improve the accuracy of

our depth estimation based on the pseudo-labeled sur-

face normal. Various qualitative results show that ”w/o

3D motion flow” easily produces distortion. When we

jointly train the 3D motion flow, the photometric con-

sistency Lc and 3D geometric consistency Lg can im-

prove the accuracy of the network.

In Fig. 12, we present two qualitative results of the

ablation study. Full supervision results are superior to

only using the surface normal as the supervising in-

formation. With the cooperative contribution of each

component in our method, we have improved the hu-

man body 3D structure completeness and decreased the

depth distortion on non-wrinkle areas caused by texture

copy.

In Fig. 13, we show an example with the 3D mesh

from different viewing angles. From the results, we can

see that the proposed method is effective. In Fig. 14,
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Input           with 3D motion flow       w/o 3D motion flow

Fig. 12 Ablation study on w/o 3D motion flow. From left
to right are the input image, the full method results, and
the results without the 3D motion flow to supervise. The two
input images are from the TikTok dataset and the Internet.

Fig. 13 The 3D meshes from different viewing angles. From
left to right are the input image, predicted depth, 3D mesh
on the current pose, and 3D meshes on the other two poses.
The input image is captured by a smartphone.

we visualize the 2D projection image of the 3D motion

flow.

5 Limitations

Our texture copy alleviation method cannot fully solve

the texture copy problem. When the non-dominant and

dominant color areas have depth differences, the image

inpainting algorithm may produce a wrong modifica-

tion. Our method may be invalid in a case with multiple

dominant colors, such as striped shirts.

6 Conclusion

We have proposed a monocular human depth estima-

tion method via jointly learning 3D motion flow. In-

stead of depth information, we use the surface normal as

the pseudo label to supervise the depth network learn-

ing. Based on the estimated depth and 3D motion flow,

we design photometric consistency and 3D geometric

Fig. 14 The 2D projection of the 3D motion flow. From left
to right are the target image Ii, the reference image Ij , and
the 2D projection of the 3D motion flow Fi→j .

consistency to enforce the accuracy of the depth esti-

mation model. Moreover, to alleviate the texture copy

artifact of the pattern and text areas, we design an

approach of color component analysis and color trans-

formation. Experiments demonstrate that our method

can produce competitive results and has a good general-

ization ability compared with state-of-the-art methods.

We have experimentally validated that 3D motion flow

can improve the accuracy of depth estimation.
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