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Abstract
mation has made great progress. However, lacking a specific mechanism to make the network learn more about the regions

Based on well-designed network architectures and objective functions, self-supervised monocular depth esti-

containing moving objects or occlusion scenarios, existing depth estimation methods likely produce poor results for them.
Therefore, we propose an uncertainty quantification method to improve the performance of existing depth estimation net-
works without changing their architectures. Our uncertainty quantification method consists of uncertainty measurement,
the learning guidance by uncertainty, and the ultimate adaptive determination. Firstly, with Snapshot and Siam learning
strategies, we measure the uncertainty degree by calculating the variance of pre-converged epochs or twins during training.
Secondly, we use the uncertainty to guide the network to strengthen learning about those regions with more uncertainty.
Finally, we use the uncertainty to adaptively produce the final depth estimation results with a balance of accuracy and
robustness. To demonstrate the effectiveness of our uncertainty quantification method, we apply it to two state-of-the-art
models, Monodepth2 and Hints. Experimental results show that our method has improved the depth estimation performance
in seven evaluation metrics compared with two baseline models and exceeded the existing uncertainty method.

Keywords

1 Introduction

Depth estimation [1] is a fundamental task in com-
puter graphics and computer vision, which can be used
in text-to-image [2], 6D pose estimation [3], and scene
reconstruction [4-6], etc. Depth estimation from a sin-
gle RGB image is an ill-posed problem. However, with
the development of deep learning, monocular depth es-
timation has become a possibility. The deep network
learns the relationship between the spatial distance and
image features with large datasets. Compared with ful-

ly supervised learning, self-supervised monocular depth

self-supervised, monocular depth estimation, uncertainty quantification, variance

estimation only needs stereo image pairs or monocular
video to supervise, which is a significant advantage.
To improve the performance of the self-supervised
depth estimation network, novel loss functions [7-9] and
network architectures [10-13] have been proposed. The
pre-processing or post-processing [14] is also considered
to increase data usage. However, these techniques only
partially solve self-supervised monocular depth estima-
tion defects. On the one hand, a specific technique to
improve certain depth estimation performance always
requires an application prerequisite. For example, the

semantic information used to sharpen the object bound-
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ary in the depth map is limited by the number of known
objects. On the other hand, self-supervised training
is an under-constraint task due to needing more opti-
mization objectives to restrict the factors such as weak
textures, moving objects, varying illumination, and oc-
clusion. Solely depending on improving neural network
architectures is hard to solve above issues.

Uncertainty quantification is an effective strategy
to improve the accuracy of the depth estimation net-
work. There are some methods [15-19] about uncer-
tainty, but these methods still have several weaknesses.
First, these methods are based on ground truth depth
to obtain uncertainty. Second, these methods can not
completely solve the under-constraint problem. Third,
these methods do not explicitly deal with the learning
difficulty of uncertainty and uncertainty regions in the
training process.

This paper proposes an uncertainty quantification
method to learn self-supervised monocular depth esti-
mation. Our idea is based on the observation that un-
certainty is caused by under-constraint and manifest-
ed as unstable prediction among consecutive training
epochs. Thus, we propose to estimate uncertainty re-
gions based on the variance of consecutive epoch results
and guide the network to learn them. Our uncertain-
ty quantification method consists of uncertainty mea-
surement, guidance, and post-processing. Based on our
simple but effective method, uncertainty regions can be
detected and better learned (see Fig.1).

Our contributions can be summarized as follows:

e We propose to use consecutive training epochs or
a Siamese network to measure the uncertainty of the
estimated depth. The estimated uncertainty mask is
used to guide the depth network learning.

e We propose ensemble-based uncertainty post-
processing to adaptively produce final depth results
with a balance of accuracy and robustness.

e Our uncertainty quantification method does not
add additional modules, which could avoid substantial-
ly modifying the baseline model.

The rest of the paper is organized as below. Sec-

tion 2 reviews the related work. Section 3 describes our
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method. Section 4 reports our experimental details and

results. Finally, Section 5 concludes our work.

(c) (d)

(e) (f)

() (h)

Fig.1. Two examples of our method. (a) RGB input. (b) RGB in-
put. (c) Depth estimated by the baseline model Monodepth2 [8].
(d) Depth estimated depth by the baseline model Hints [14]. (e)
Uncertainty mask of depth. (f) Uncertainty mask of depth. (g)
Depth estimated by our method (Snapshot). (h) Depth estimated
by our method (Siam).

2 Related Work

2.1 Self-supervised Monocular Depth Estima-
tion

Garg et al. [7] established the cornerstone of self-
supervised monocular depth estimation, and the pho-
tometric reconstruction loss is the core loss function.
Godard et al. [20] proposed a depth estimation network
named Monodepth. Monodepth predicts left-right dis-
parities to enforce consistency between the disparities
produced relative to the left and right images.

Zhou et al. [21] first used the monocular video to
train the depth estimation network by jointly learning
the depth and relative pose. Godard et al. [8] proposed
the three innovations in Monodepth2. First, they de-
signed a minimum photometric reconstruction loss to
address the problem of occluded pixels. Second, they
designed an auto-masking loss to ignore training pixels

that violate relative camera motion assumptions. Fi-
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nally, they up-sampled the predicted multi-resolution
depth maps to the input resolution and computed all
losses to reduce texture-copy artifacts. Bian et al. [9]
proposed a geometry consistency loss to penalize the in-
consistency of predicted depths between adjacent views
and a self-discovered mask to automatically localize
moving objects that violate the underlying static scene
assumption and cause noisy signals during training.
Some methods proposes to use multi-task training
strategies to improve depth estimation accuracy. Yin
and Shi [22] proposed to use a multi-task learning net-
work GeoNet for monocular depth, optical flow, and
ego-motion estimation. Zou et al. [23] proposed DF-
Net to solve the same three objectives. GeoNet uses
the deep network to estimate the residual flow, but DF-
Net uses the deep network to estimate the optical flow.
Klingner et al. [10] used a semantic segmentation net-
work to detect moving objects, preventing photometric

reconstruction from contaminating.
2.2 Uncertainty in Depth Estimation

Machine learning treats under-constraint as an un-
certainty problem [24]. Liu et al. [25] made a systemati-
cal discussion on uncertainty in depth estimation. Song
et al. [26] divided the uncertainty of neural network-
s into two categories: random uncertainty and model
uncertainty. Random uncertainty is from sensor and
motion noise, which may cause inaccurate observation
data. Model uncertainty mainly refers to the uncertain-
ty of model parameters [26].

Random Uncertainty. Choi et al. [18] proposed a
model consisting of a monocular depth network, a confi-
dence network, and a threshold network. They distilled
the training dataset with the confidence and threshold
networks to supervise the monocular depth network.
Shen et al. [27] supposed that the noise obeyed the
They

used a two-stage teacher-student framework to estimate

Gaussian distribution in the training dataset.

the uncertainty.
Model Uncertainty. Asai et al. [15] formulated re-
gression with uncertainty estimation as a multi-task

learning problem and designed a separate multi-task

loss to optimize the depth and uncertainty, respective-
ly. Mertan et al. [16] treated the relative depth estima-
tion problem as maximum likelihood estimation. They
assumed that the depth followed a normal distribution
and used a neural network to learn the mean and vari-
ance distribution parameters. The mean represents the
depth, and the variance indicates the uncertainty. Teix-
eira et al. [17] constructed a confidence network and a
depth network. The estimated confidence is used to
filter out unreliable depth.

Poggi et al. [19] summarized the uncertainty quan-
tification of the depth estimation. Their work analyzed
three uncertainty categories: empirical, predictive, and
Bayesian. Predictive and Bayesian categories need ex-
tra uncertainty estimation models. However, integrat-
ing them into the baseline model is inconvenient. Em-
pirical estimation could work independently with the
baseline model, which is suitable for single-value objec-
tive optimization by increasing the diversity of iteration
solutions.

The most difference between the method of Poggi et
al. [19] and our method is that we make use of consec-
utive training epochs or a Siamese network to identify
uncertainty and convert it into a spatial mask over the
training image to guide network learning, rather than
increasing the diversity by making an ensemble of dif-

ferent solutions.

3 Depth Estimation with Uncertainty Quan-

tification

We propose an uncertainty quantification method to
train self-supervised monocular depth estimation. Our

goal function can be expressed as follows:
BT, M),

where T' is the baseline model, M is the uncertainty
mask constructed by the uncertainty information over
all pixels of the depth map to identify uncertainty po-
sitions and measure the uncertainty degree.

We use Snapshot [28] and Siam [29] to realize our
method (see Fig.2(a)). The uncertainty quantification
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Fig.2. Overview of the uncertainty quantification method. (a) Two empirical uncertainty quantification approaches, Snapshot and
Siam, in the training process. (b) Uncertainty quantification method consisting of three steps: uncertainty measurement, uncertainty
guidance, and uncertainty post-processing. Symbol I' is the baseline model, M is the uncertainty mask, and £ denotes the loss function.



Yuan-Zhen Li et al.: Self-supervised monocular depth estimation by uncertainty quantification 5

consists of uncertainty measurement, uncertainty guid-

ance, and uncertainty post-processing (see Fig.2(b)).
3.1 Snapshot and Siam

Snapshot. Snapshot is a learning strategy to en-
semble multiple solutions to solve the single-value opti-
mization question [28], promoting the diversity of mod-
els by aggressively cycling the learning rate used during
a single training. We find that neighboring epochs can
exhibit well constraint and under-constraint parts with
inconsistent results. Thus, we choose pre-converged e-
pochs as members to distinguish certainty and uncer-
tainty pixels.

Siam. Siamese network (Siam) consists of two i-
dentical sub-networks [29] called twins. We use Siam
to run two streams of training, where the twins in each
epoch are used to compare and distinguish certainty
pixels and uncertainty pixels.

We consider Snapshot and Siam to suit for different
conditions. Snapshot calculates the horizontal variance
of the baseline model based on the difference of con-
secutive epochs, which can provide more meaningful
uncertainty information for the relatively weak base-
line model. Siam calculates the uncertainty by measur-
ing the vertical variance between the two sub-networks,
which can provide more useful uncertainty information

for models with relatively stronger performance.
3.2 Uncertainty Measurement

Snapshot collects consecutive epochs in back-
forward order from the current epoch and calculates
uncertainty (see Fig.3). During the training process,
the variance of depth maps from different epochs is used
to calculate the uncertainty information:

1< — )
U= N;(Di — Dsnapshot)” (1)

where N is the number of closely adjacent pre-converge
models, D; is the estimated depth of model I" at the
i-th epoch and ﬁSnapshot is the average of depth maps:

1 N
DSnapshot = NZ D;.
=1

We need to determine two factors. One is how many
pre-converged epochs are needed, and the other is which
are chosen. We search one small interval for one em-
pirically optimal value for the first one. For the sec-
ond one, we reasonably use consecutive pre-converged
epochs just before the current epoch because certainty
parts benefiting from the well-constraint should keep

stable outputs in closely adjacent epochs.
(a) (b)
(c) , (d)
(e) ()

Fig.3. Five depth maps from consecutive pre-converged epochs
based on the baseline model Monodepth2-M50 and the corre-
sponding uncertainty mask. (a) Depth estimated from the 13th
epoch. (b) Depth estimated from the 14th epoch. (¢) Depth esti-
mated from the 15th epoch. (d) Depth estimated from the 16th
epoch. (e) Depth estimated from the 17th epoch. (f) Uncertainty
mask.

Siam calculates the uncertainty in a mirroring-and-
referring way, where the twin networks act like a mir-
ror for each other to refer to and calculate uncertainty.
Siam runs relatively independent streams. At the same
epoch, the depth results from twins would compare and
calculate the uncertainty:

1 —
U =3 (Di ~ Dsiam)”,

i=1

where Dygjay, is the average of depth maps:

- 1<
Dgjam = 5;1)1

There is one factor for Siam to determine which epoch
starts to estimate the uncertainty. We differently get

an empirically optimal value.



3.3 Uncertainty Guidance

Here, we use the uncertainty measurement U to ex-
plicitly and spatially guide the learning of the network.
We use the mean value of the uncertainty U as the
threshold u, imposing the uncertainty on pixels differ-
ently:

u= i Z U(k (2)
kel
where U (k) is the uncertainty value at each pixel k in
the image space I, and |I| is the total amount of pixels
in input image I.

If the uncertainty value U (k) is smaller than the
threshold w, we think it has not been influenced by
uncertainty and should only have the definite well-
constraint loss part. Conversely, the total loss can add
uncertainty when the uncertainty value U (k) is greater

than the threshold u. The uncertainty mask M is:

U(k) < u,

U(k) > u, ®)

M(k) = {1’
1+ AU(k),
where ) is an empirical parameter to control the weight
given to the uncertain pixel.

After considering the uncertainty guidance, the new
loss function can be expressed as Lynow = ML, and L is
the loss function of the baseline model I'. Fig.4 demon-
strates two uncertainty guidance examples on Snapshot
and Siam. Uncertainty guidance can persistently con-
centrate on masking the rich uncertainty regions, and

their area shrinks when the learning advances.
3.4 Uncertainty Post-processing

When the training process terminates, the trained
model cannot completely reach the desired optimal
point. It is possible to be a bit under-fit or over-fit. If
the training termination is beyond the optimal point,
it may cause texture copy or other artifacts. Therefore,
we use the averaging result as the final output. If the
last epoch in Snapshot or the better one in twin mod-
els is quite near but not reaches the optimal point, we
choose the last epoch as the final output for Snapshot

and the better one in twin models as the final output

J. Comput. Sci. & Technol., January 2023, Vol., No.

for Siam because it would be most close to the optimal
point.

According to the principle above, the final depth
after uncertainty post-processing D, is determined
based on the uncertainty information:

Dupll) = {Dp«k),

where D denotes ESnapshot or Dgiam, Drv is the depth
map of the last epoch model IV in Snapshot or the bet-
ter twine model I in the Siam, and wu is the threshold
in (2).

17 18 19 20 Input

16

Fig.4. Five uncertainty masks from the 20th epoch back to the
16th epoch. (a) Monodepth2+Snapshot-M50. (b) Hints+Siam-
MS50.

3.5 Baseline Models

We choose Monodepth2 [8] and Hints [14

baseline model I" to validate the proposed uncertainty

| as the

quantification method, respectively. Monodepth2 and
Hints are the two frequently used methods and have
well-organized source codes, which could guarantee the
fairness of evaluation. We do not modify the parame-
ters and structures of the two baseline models but only
impose uncertainty on their loss functions.
Monodepth2. Referring to [20,30], the photometric
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reconstruction loss function £, is as follows:
«

Lo T) = 5

+(1 =) [t — Ty—el];

where o = 0.85 and SSTM () denotes structure similar-

1— SSIM(I;, Iy —y))

ity index measure which is computed over a 3 x 3 pixel
window [31]. The re-projected image I/ _,; is generated

by operation:
Iy = Iy (proj(Dy, Ty, K)),

where (.) is the sampling operator, T;_,4 is the camer-
a relative pose, and K € R®*3 is the camera intrinsic
parameter matrix. Operation proj() gets the 2D coor-

dinates of the projected depths D, in image I :
proj(Dy, Ty, K) = KT,y Dy(p:) K~ ' py,

where p; is a pixel coordinate.

To encourage neighboring pixels to have similar
depths, an edge-aware depth smoothness loss Lg weight-
ed by image gradients is used to improve the predictions

around object boundaries:
—l0xI —lloy I
Ly = |0, D™ e 0xTell 4 |8, D™ e 10y Lell

where O¢ and 0y are gradient operations on x-axis and
y-axis respectively, and D™ is the mean-normalized
inverse depth.

The final loss is computed as the weighted sum of
image photometric reconstruction loss £, and smooth-
ness loss Lg:

L=Ly+ pls,
where p = 0.01 is the weighting for the smoothness
term.

Hints. Watson et al. [14] introduced depth hint to
help the network escape from local minima and to guide
it toward a better overall solution. A stereo matching
algorithm [32] is used to get depth hint D,, creating a
second synthesized view ftf%t. They had conditions to
determine whether or not to apply a supervised loss ﬁt
as the ground truth on pixel k:

_ {cpw(k)) + Lo (D(k), D(R)), it v,

| Le(D(K),

otherwise,

where £1°851 (D (k), D(k)) = log(1+||I; — Iy/—]|,), and
v denotes L,(D(k)) < L,(D(k)).

4 Experiments

In experiments, we train the proposed uncertainty
quantification method on the KITTI dataset [33] and
evaluate it using the Eigen split test frames [34]. The
program is implemented with Pytorch and GPU: N-
VIDIA GeForce GTX 2080Tix2. In our experiments,
M denotes that the training is on monocular videos,
S denotes that the training is on stereo pairs, and M-
S denotes that the training is on calibrated binocular
videos. In all tables, the symbol | means that the s-
maller the value is, the better the performance is. The
symbol T means that the bigger the value is, the better
the performance is. The best result in each category is

written in bold.
4.1 Evaluation Metrics

Depth Metrics. We use seven metrics [34] to eval-
uate the estimated depth results. The four error met-
rics measure the difference between predicted depth D
and ground-truth depth Dyg;: the absolute relative er-
ror (Abs Rel), the squared relative error (Sq Rel), the
root mean square error (RMSE), and the logarithmic
root mean square error (RMSE log). The three accura-
cy metrics give the fraction § of predicted depth inside
an image whose ratio and inverse ratio with the ground
truth are below the thresholds § < 1.25, § < 1.252, and
d < 1.253. For the first four metrics, the lower, the bet-
ter. For the last three metrics, the higher, the better
(see Table 1).

Table 1. Depth Metrics

Metric Definition
1§ [P —De:(R)]
Abs Rel D] kze:I Dl
2
Sq Rel L5 DR = Dee (W)
D] kel D(k)
RMSE |, [1p7 & |D(k) - Dge(k)[?
kel
RMSE log \Tl7l S |log D(k) — log Dy (k)|2
kel
— D(k) Dgi(k)
Accuracy |% of D(k) s.t. § = max(m, Dgzk) ) < threshold

Note: D(k) is the predicted depth at each pixel k in the image
space I, Dgi(k) is the corresponding ground truth depth, |D)|
is the total amount of pixels in input image. Three differen-
t thresholds 1.25,1.252,1.25% are used in the accuracy metrics,
respectively.



Uncertainty metrics. We use two metrics of the area
under the sparsification error (Ause) (4) and the area
under the random gain (Aurg) (5) to evaluate how sig-

nificant the model uncertainties are [19]:
Ause(U, D) = e(D) — e(Dy), (4)

Aurg(U, D) = Ey(rand, D) — E;(U, D), (5)

where €(.) is the depth map error metric and D, is the
depth map for the 2% pixels with the highest uncertain-
ty. Abs Rel, RMSE or ¢ > 1.25 (since § < 1.25 defines
an accuracy score) is used as e. Ause quantifies how
close the estimation is to the ideal sparsification un-
certainty (the lower, the better). Aurg quantifies how
better it is compared with no modeling (the higher, the
better).

4.2 Parameter Setting

We do several important many experiments to de-
termine the empirical parameter A in (3), the start-
ing epoch N of Siam, the number of closely adjacen-
t pre-converge models N in (1) of the Snapshot, and
the threshold of uncertainty mask M. We approxi-
mately enumerate multiple A values to determine a rec-
ommended setting for the subsequent experiments. As
shown in Table 2, we set A = 1 for all experiments to
reduce the computation cost. As shown in Table 3, we
set the starting epoch of the Siam at the 1st epoch. As
shown in Table 4, we set parameter N = 5 and start the
uncertainty guidance of the Snapshot at the 6th epoch.
In (2), the mean and other possible options like frac-
tional mean and median can be used as the threshold
to determine the uncertainty mask. Table 5 and Fig.5
show that the mean value as the threshold achieves the
best performance.

Table 2. The Enumeration Experiment of the Hyperparameter
A in the Uncertainty Mask Calculation

Monodepth2+Snapshot-M50 Hints+Siam-MS50

Abs Rel] RMSE| § < 1.251|Abs Rell RMSE| 0 < 1.257
0.6| 0.110 4.574 0.881 0.101 4.561 0.881
0.8| 0.110 4.599 0.882 0.102  4.539 0.881
1.0 0.109 4.551 0.885 0.102 4.546 0.880
1.2| 0.108 4.542 0.884 0.102 4.563 0.882
1.4| 0.110 4.580 0.886 0.102 4.572 0.882

J. Comput. Sci. & Technol., January 2023, Vol., No.

(b)

(c) (d)

Fig.5. Uncertainty masks from the uncertainty map U based
on different thresholds on the baseline model: Monodepth2-M50.
(a) The median of the uncertainty map U as the threshold. (b)
The mean of the uncertainty map U as the threshold. (c) 0.8
mean of the uncertainty map U as the threshold. (d) 1.2 mean
of the uncertainty map U as the threshold.

Table 3. The Enumeration Experiments of the Starting Epoch
N in Siam

Model Abs Rel| | RMSE] | 6 < 1.257

N
Hints+Siam-MS50 | 1 0.102 4.546 0.880
Hints+Siam-MS50 | 3 0.102 4.572 0.881
Hints+Siam-MS50 | 5 0.102 4.568 0.881

Table 4. The Number of Closely Adjacent Pre-converge Models
N of Snapshot

Model Abs Rel] | RMSEJ |0 < 1.257

Monodepth2+4Snapshot-M50 0.109 4.551 0.885

N
Monodepth2+4Snapshot-M50 | 3 0.110 4.593 0.883
5
Monodepth24Snapshot-M50 | 7 0.146 5.366 0.802

Table 5. Verification Experiments of Different Thresholds in the
Uncertainty Mask Calculation in (3)

Mask Monodepth2+Snapshot-M50 Hints+Siam-MS50

Abs Rel| RMSE] 0 < 1.257 |Abs Rel] RMSEJJ < 1257

mean 0.109 4.551 0.885 0.102 4.546 0.880
0.8 mean| 0.115  4.670 0.871 0.102 4.546 0.882
1.2 mean| 0.115  4.702 0.873 0.102  4.555 0.881

median | 0.111 4.584 0.882 0.103  4.584 0.878

Table 6. Uncertainty Evaluation

Method Abs Rel RMSE §>1.25
Ausel Aurgt | Ause] Aurg? | Ausel Aurgt
[19] 0.069 0.005 | 3.733 0.258 | 0.101  0.008
Oursl 0.054 0.018 | 3.316 0.557 | 0.071 0.035
Ours2 0.043 0.027 | 3.071 0.860 | 0.057 0.051

Note: Oursl:
Hint+Siam-MS50.

Monodepth2+Snapshot-M50 and Ours2:

4.3 Performance Evaluation

We evaluate the accuracy of the depth and how
A total of
six conditions of Monodepth2, Monodepth2-+Snapshot,
Monodepth2+Siam, Hints, Hints+Snapshot, and

significant the model uncertainties are.

Hints+Siam are taken into evaluation. We use three
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Fig.6. Quantitative performance evaluation of Snapshot and Siam on the baseline model Monodepth2 [8] with seven depth metrics.
One radar chart illustrates one metric and an axis of the radar chart represents one training paradigm (M, S, or MS). (a) Abs Rel. (b)
Sq Rel. (c) RMSE. (d) RMSE log. (e) § < 1.25. (f) § < 1.252. (g) § < 1.25%.
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Fig.7. Quantitative performance evaluation of Snapshot and Siam on the baseline model Hints [14] with seven depth metrics. One
radar chart illustrates one metric and an axis of the radar chart represents one training paradigm (M, S, or MS). (a) Abs Rel. (b) Sq
Rel. (c) RMSE. (d) RMSE log. (e) § < 1.25. (f) § < 1.252. (g) § < 1.253.



Table 7. Ablation Study on the Baseline Model Monodepth2

Yuan-Zhen Li et al.: Self-supervised monocular depth estimation by uncertainty quantification

. Snapshot Siam
Backbone [8] | Train | UG | UP |\ —pepr—pniep—s > Tosr Abs Rel] RMSE] 5 <1257
Monodepth2-18 M X | X 0.118 4.887 0.874 0.118 1.887 0.874
Monodepth2-18 M v | x 0.116 4.807 0.876 0.115 4.784 0.876
Monodepth2-18 M v | D 0.115 4.807 0.874 0.116 4.784 0.873
Monodepth2-18 M v | v 0.114 4.762 0.879 0.114  4.693 0.877
Monodepth2-50 M X | X 0.112 1.718 0.880 0.112 1.718 0.880
Monodepth2-50 M VR 0.109 4.556 0.885 0.111 4.714 0.879
Monodepth2-50 M v | D 0.110 4.560 0.881 0.111 4.716 0.878
Monodepth2-50 M v | v 0.109 4.551 0.885 0.111 4.712 0.880
Monodepth2-18 S X | X 0.110 5.001 0.867 0.110 5.001 0.867
Monodepth2-18 S v | x 0.110 4.950 0.864 0.109 4.921 0.865
Monodepth2-18 S v | D 0.109 4.957 0.866 0.108 4.890 0.866
Monodepth2-18 S v v 0.109 4.924 0.866 0.109 4.882 0.865
Monodepth2-50 S X | X 0.106 1.861 0.871 0.106 1.861 0.871
Monodepth2-50 S v | x 0.105 4.816 0.870 0.105 4.803 0.872
Monodepth2-50 S v | D 0.105 4.833 0.868 0.104 4.780 0.874
Monodepth2-50 S v v 0.105 4.799 0.870 0.103 4.709 0.875
Monodepth2-18 | MS X | X 0.107 1.788 0.873 0.107 1.788 0.873
Monodepth2-18 | MS v | ox 0.106 4.725 0.873 0.106 4.714 0.871
Monodepth2-18 | MS v | D 0.108 4.723 0.871 0.107 4.715 0.872
Monodepth2-18 | MS v v 0.105 4.717 0.874 0.106 4.678 0.873
Monodepth2-50 | MS X | X 0.103 1.658 0.880 0.103 1.658 0.880
Monodepth2-50 | MS v | x 0.102 4.650 0.880 0.104 4.650 0.881
Monodepth2-50 | MS v | D 0.103 4.651 0.880 0.104 4.651 0.880
Monodepth2-50 | MS v v 0.102 4.648 0.881 0.103 4.649 0.881
Table 8. Ablation Study on the Baseline Model Hints
. Snapshot Siam
Backbone [14] | Train | UG | UP \—popar RI\/FSEJ, 5§ < 1.257 | Abs Rel] RMSE] < 1.257
Hints-18 S X | X 0.109 1.812 0.872 0.109 1812 0.872
Hints-18 S v | x 0.107 4.742 0.876 0.107 4.747 0.875
Hints-18 S v | D 0.106 4.763 0.874 0.106 4.748 0.874
Hints-18 S v | v 0.105 4.714 0.878 0.105 4.683 0.877
Hints-50 S X | X 0.104 1.677 0.879 0.104 4.677 0.879
Hints-50 S v | x 0.103 4.604 0.879 0.102 4.581 0.881
Hints-50 S v | D 0.104 4.613 0.879 0.102 4.576 0.882
Hints-50 S v oV 0.102 4.582 0.881 0.101 4.551 0.883
Hints-18 MS X | X 0.107 1.780 0.874 0.107 4.780 0.874
Hints-18 MS v | x 0.105 4.726 0.875 0.105 4.654 0.877
Hints-18 MS v | D 0.104 4.727 0.876 0.107 4.649 0.876
Hints-18 MS oV 0.105 4.676 0.876 0.103 4.620 0.879
Hints-50 MS X | X 0.102 1.629 0.883 0.102 1.629 0.883
Hints-50 MS VR 0.102 4.602 0.882 0.103 4.599 0.879
Hints-50 MS v | D 0.103 4.602 0.881 0.104 4.599 0.881
Hints-50 MS ol 0.102 4.582 0.883 0.102 4.546 0.880

training paradigms:

and calibrated binocular videos.

stereo pairs, monocular videos,

We use the convolu-

models on all training paradigms and ResNet18/50.

Uncertainty Fvaluation.

11

We quantitatively eval-

tional neural networks ResNet18 and ResNetb0 to ex-
tract the image features. Because the stereo matching
algorithm needs a stereo pairs image, Hints can not
train on monocular videos.

Depth Evaluation. Fig.6 and Fig.7 illustrate the ac-
curacy of the estimated depth on the two baseline mod-
els Monodepth2 and Hints, respectively. Snapshot and

Siam have improved the accuracy of the two baseline

uate the model uncertainty using the two uncer-
tainty metrics. Monodepth2+Snap+Self-M50 is the
best model in the existing uncertainty method [19].
Monodepth2+Snapshot-M50 and Hint+Siam-MS50 are
the optimal models in our results. Table 6 summarizes
the quantitative evaluation results on the two uncer-

tainty metrics. We can see that our results are better

than the method [19].
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Table 9. Quantitative Comparison with Existing Methods
Method Year | Train [ Abs Rel] [ Sq Rell | RMSE] [ RMSE log] [§ < 1.251 [ 4§ < 1.25%1 [ 4 < 1.25%%
Zhou et al. [21] 2017| M 0.183 1.595 6.709 0.270 0.734 0.902 0.959
GeoNet [22] 2018| M 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DF-Net [23] 2018| M 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Ranjan et al. [35] 2019| M 0.148 1.149 5.464 0.226 0.815 0.935 0.973
Struct2depth [36] 2019| M 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Monodepth2 [8]x f 2019| M 0.118 0.912 4.887 0.196 0.874 0.958 0.980
Klingner et al. [10] 2020 M 0.117 0.907 4.844 0.196 0.875 0.958 0.980
PackNet [11] 2020 M 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Johnston et al. [37] 2020 M 0.106 0.861 4.699 0.185 0.899 0.962 0.982
Poggi et al. [19]@ 2020 M 0.112 0.838 4.691 0.186 0.881 0.961 0.983
Bian et al. [9] 2021 | M 0.126 0.920 5.245 0.208 0.840 0.949 0.979
SD-SSMDE [38] 2022| M 0.108 0.751 4.485 0.180 0.885 0.964 0.984
Oursl ((Monodepth2+Snapshot-50)) - M 0.109 0.792 4.551 0.184 0.885 0.963 0.983
Garg et al. [7] 2016 S 0.152 1.226 5.849 0.246 0.784 0.921 0.967
Monodepth R50 [20] 2017 S 0.133 1.142 5.533 0.230 0.830 0.936 0.970
StrAT [39] 2018 S 0.128 1.019 5.403 0.227 0.827 0.935 0.971
Poggi et al. [40] 2018 S 0.129 0.996 5.281 0.223 0.831 0.939 0.974
Monodepth2 [8]* 2019 S 0.110 0.903 5.001 0.209 0.867 0.949 0.975
Hints [14]* 2019 S 0.109 0.870 4.812 0.194 0.872 0.957 0.980
Poggi et al. [19]©@ 2020 S 0.108 0.835 4.856 0.202 0.865 0.951 0.977
Wavelet Decomposition [12] 2021 S 0.105 0.813 4.625 0.191 0.879 0.959 0.981
Ours(Hints+Siam-50) - S 0.101 0.771 4.551 0.187 0.883 0.961 0.981
Hints [14]* 1 2019 | MS 0.107 0.857 4.780 0.193 0.874 0.958 0.980
Monodepth2 [8]* 2019 | MS 0.107 0.829 4.788 0.197 0.873 0.957 0.979
Poggi et al. [19]@ 2020 | MS 0.104 0.783 4.654 0.190 0.876 0.958 0.981
Ours(Hints+Siam-50) - MS 0.102 0.769 4.546 0.188 0.880 0.961 0.982

Note: * denotes the model is retrained, { denotes the baseline method, and @ denotes the uncertainty method [19].

Ablation Study. We conduct an ablation study to
validate the effectiveness of the uncertainty guidance
and post-processing. We switch on and off uncertain-
ty guidance and post-processing in all three training
paradigms on baseline models Monodepth2 and Hints.
Table 7 and Table 8 present the complete result, respec-
tively, where UG denotes uncertainty guidance, UP de-
notes uncertainty post-processing, v'denotes "turn on
the corresponding step”, and X denotes ”turn off the
corresponding step”. We can see that uncertainty guid-
ance and uncertainty post-processing can improve the
accuracy of the depth estimation network, respectively.
The best result is to use both uncertainty guidance and
uncertainty post-processing.

We make

comprehensive comparisons with the current repre-

Comparison with FEzisting Methods.
sentative methods. Table 9 presents the quantita-
tive results of the estimated depth. For the base-
line model Monodepth2, Monodepth2+Snapshot-M50
achieves the best result. For the baseline model Hints,
Hints+Siam-MS50 achieves the best result. Our pro-

posed uncertainty quantification improves the accuracy

of the two baseline models. Compared with the uncer-
tainty work [19], our results are superior. Fig.8 demon-
strates a group of resulted depth maps. The objects
have complete structures and sharp boundaries in our

depth maps.

5 Conclusion

This paper proposes a novel uncertainty quantifica-
tion method to train a self-supervised monocular depth
estimation network. The uncertainty quantification
method contains uncertainty measurement, guidance,
and post-processing. Experimental results on the KIT-
TI dataset show that our approach can improve the
depth estimation accuracy of seven evaluation metric-
s and exceeds the existing uncertainty method in t-
wo uncertainty metrics. We also demonstrated the ef-
fectiveness of the proposed uncertainty guidance and
post-processing. They can improve the accuracy of the
depth estimation network. The uncertainty quantifi-
cation can be conveniently generalized to other deep-

learning work.
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Fig.8. Qualitative comparison with existing methods. (a) RGB
input. (b) Depth estimated by Monodepth2 [8]. (c) Depth esti-
mated by Hints [14]. (d) Depth estimated by PackNet [11]. (e)
Depth estimated by Klingner et al. [10]. (f) Depth estimated by
Poggi et al. [19]. (g) Depth estimated by our method.
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