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ABSTRACT

The existing Generative Adversarial Network-based text-to-
image generation methods suffer from mode collapse and
training instability. This paper relieves these problems by im-
proving the discriminator ability from three aspects. First,
we propose a diversity-sensitive conditional discriminator (D-
SCD), which increases the diversity of the generated images
by judging the combination of the generated image and mis-
matched text as false. Second, for the unconditional discrim-
inator, we propose a contrastive searching gradient penalty
(CSGP) strategy to measure the realism of the generated im-
ages and to penalize the gradients for stabilizing the training
process. Finally, we introduce a multi-level images similarity
(MLIS) loss for the discriminator feature extractor to further
promote the high-level feature similarity between the real and
generated images and objects. Extensive experimental result-
s and ablation studies demonstrate that our modifications on
the discriminators can effectively improve the quality of the
generated images.

Index Terms— Text-to-image generation, discriminator,
diversity, stability

1. INTRODUCTION & RELATED WORKS

Generating realistic images from text descriptions is an ac-
tive research field in computer vision and multimedia com-
munities. Our goal is to generate photo-realistic images that
can exhibit as much semantic information of the text descrip-
tion as possible. Generative Adversarial Networks (GANs)
have played an important role in text-to-image generation as
the generator-discriminator structure is suitable for the cross-
modality transformation task.

Many works [1–4] focus on the improvement of genera-
tors and fine-grained text-image consistency. In practice, the
discriminators are important in providing the right guidance
for the training of generators. The discriminator of GAN
for the text-to-image generation task was firstly designed to
judge whether the feature of the generated image (fake im-
age) is consistent with the sentence feature vector [5]. Zhang
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et al. [6] proposed hierarchically-nested discriminators for
multi-scale fake images to train the generator jointly. Zhang
et al. [7] proposed joint conditional and unconditional (two-
way) discriminators, which can determine whether a fake im-
age matches the input description as [5] and distinguish real-
istic images from fake ones, respectively. The two-way dis-
criminators are widely used in the subsequent works. The
methods [3,4,8] proposed fine-grained discriminators accom-
panying with the two-way discriminators to estimate the local
and global image quality of the fake images.

Text-to-image generation is a multi-modal task that more
than one image can visualize the input text. However, the two-
way discriminators ignore this feature and conduct overstrict
punishment for the multi-modal task. The strict discrimina-
tors will give rise to mode collapse and training instability of
GAN. To increase the diversity of the fake images and allevi-
ate the instability of GAN’s training, Lim et al. [9] proposed
geometric GAN using the separating hyperplane from Sup-
port Vector Machine. Their proposed Hinge loss can stabilize
the training of GAN but may not effectively measure the sim-
ilarity between the real and fake images. Hu et al. [10] pro-
posed DCGAN to increase the diversity of single-object fake
images using multiple generators and one discriminator. Tao
et al. [11] considered some fake images as real ones during the
training process. However, this strategy applied a fixed num-
ber of false images as real ones at each training step, which
reduced accuracy.

Improving the similarity between corresponding real and
fake images can further increase the diversity among fake im-
ages. Recently, some works added fake-real images similarity
loss to promote image similarity in high-level image features.
For example, Zhang et al. [12] proposed contrastive losses be-
tween (1) image and text, (2) region and word, and (3) fake
and real images to train the generator. They used discrimina-
tor network as image feature extractor. However, they did not
train the discriminator specially as a qualified feature extrac-
tor to distinguish the high-level features of the real and fake
images. For complex scene images, we need to improve the
similarity between real and fake images, objects and object
positions. Dong et al. [13] captured features at both image
and object levels to generate image captions. Some method-
s [14, 15] built scene graphs or established rules to constraint
the objects and their positions, but they are less efficient than



Fig. 1. The overall structure of our proposed method.

trained GANs.

To alleviate the above problems, we propose three solu-
tions to improve conditional and unconditional discrimina-
tors. First, we change one of the judgments in the training of
the conditional discriminator. Traditional methods judge the
combinations of the generated images and matched texts as
false, which ignore the diversity of the fake images. Instead,
we judge the combinations of the generated images and mis-
matched texts as false. This modification can alleviate mode
collapse and facilitate the generation of more diverse images.
Second, we propose a contrastive searching gradient penal-
ty strategy for the unconditional discriminator. We determine
whether the fake image is real or fake by comparing its dis-
tances from both the constructed real and fake images. To
stabilize the training of GAN, we also penalize the gradient
explosion caused by undervaluing some contrastive real im-
ages. Finally, we propose multi-level images similarity loss to
improve the similarity of the fake & real images and fake &
real foreground objects. Before extracting image and objec-
t features using the discriminator network, we train the dis-
criminator network to be a qualified feature extractor. The
trained discriminator can distinguish the features from real
and fake images by using triplet and center losses.

In conclusion, the contributions of our work are threefold:

(1) We propose a diversity-sensitive conditional discrimi-
nator (DSCD) to increase the diversity of the fake images and
alleviate the mode collapse;

(2) We propose a contrastive searching gradient penalty
(CSGP) strategy for the unconditional discriminator. It can
better evaluate the realism of the fake images and penalize
the gradient explosion for stabilizing the training of GAN;

(3) We propose a multi-level images similarity (MLIS)
loss to improve the similarity measurement between the fea-
tures of real and fake images and objects. Specially, we train
the discriminator to effectively extract features, which are
used to compute the MLIS loss.

2. METHOD

We adopt the widely used two-way (conditional and uncondi-
tional) discriminators to train the generators in GAN for the
text-to-image generation task. The overall structure of our
method is shown in Fig. 1.

2.1. Diversity-sensitive conditional discriminator (DSCD)

The conditional discriminator is trained to give correct judg-
ments for three different combinations. It needs to judge the
combined features of (1) the real images and matched texts as
true, (2) the real images and mismatched texts as false and (3)
the fake images and matched texts as false: Dc(xi, sj) = True, i = j

Dc(xi, sj) = False, i 6= j
Dc(G(zi, si), sj) = False, i = j

(1)

where Dc is the conditional discriminator, G is the generator,
xi ∼ Pdata is the i-th real image, zi ∼ P(z) is the noise vector
that normally sampled from standard normal distribution and
sj is the input text description.

First, it is unreasonable to judge the combination of the
fake images and matched texts as false. On the one hand, a
fake image with poor realism is unlikely to match the corre-
sponding text, which means this judgment is barely used. In
more cases, the fake images are neither realistic nor seman-
tically match the input text, especially in the early stages of
GAN’s training. On the other hand, when the generated im-
ages have high quality in the late stages of GAN’s training, it
is more reasonable to remove this judgment. In practice, the
qualified generated images will not look the same as the re-
al images due to the multi-modal nature of the text-to-image
generation task. When we have high-quality fake images that
match the corresponding texts but different from the corre-
sponding real images, the original Dc may become too strict
to judge the combinations as true. Moreover, this overstrict
Dc will further lead to mode collapse in the image genera-
tion [11].

Meanwhile, we find it is beneficial to judge the combina-
tion of the fake images and mismatched texts as false:

Dc(G(zi, si), sj) = False, i 6= j. (2)

The modified Dc will penalize the fake images that mismatch
the corresponding input texts. When the mode collapse ap-
pears, many generated fake images are visually similar and
tend to be semantically inconsistent with the corresponding
input texts. The modified Dc will penalize this phenomenon
and generate more reasonable adversarial losses to relieve the
mode collapse and help generate more diverse images.



Fig. 2. The main approach of the contrastive searching gradi-
ent penalty (CSGP) strategy for unconditional discriminator.

2.2. Contrastive searching gradient penalty (CSGP) for
unconditional discriminator

In this work, we propose a contrastive searching gradien-
t penalty (CSGP) strategy for unconditional discriminator,
which is shown in Fig. 2. We propose a contrastive search-
ing approach to judge the realism of the generated images.
Then we penalize the gradients produced by the undervalued
fake images to stabilize the training of GAN.

2.2.1. Contrastive searching for unconditional discriminator

We propose a more reasonable approach for the uncondition-
al discriminator to estimate the realism of the fake images.
Specifically, we first construct real and fake image sets, and
then compute the distances from the fake image to both the
constructed image sets. We estimate a fake image as a con-
trastive real image if it is close to the constructed real image.
Otherwise, we estimate it as a contrastive fake image.

Formally, we construct a real image set ICr for a batch of
fake images by:

ICr = λ1I
R + (1− λ1)IF, (3)

where IR is the ground truth real images and IF is the gen-
erated fake images. In our implementation, we randomly set
λ1 ∈ [0.85, 0.99]. Likewise, we construct the fake image set
ICf by:

ICf = λ2I
N + (1− λ2)IF, (4)

where IN is the random noise images with the same sizes
as the fake images. Their pixel values are randomly sampled
fromUniform(−1, 1). The value of λ2 is randomly sampled
from [0.4, 0.6].

For a generated fake image IFi , we compare its distances
from both the corresponding constructed real and fake images
ICri and ICfi to decide whether IFi is a contrastive real image.
Formally, we compute both the distances dri and dfi utilizing
the output values from the unconditional discriminator Du:

dri = |Du(IFi )−Du(ICri)| (5)

dfi = |Du(IFi )−Du(ICfi)| (6)

where | · |means the absolute value of the differences. Finally,
we judge the generated image IFi as a contrastive real image
if dri < dfi and Du(IFi ) ≥ α. The parameter α is used to
ensure the realism of IFi , and we normally set it to be 0.

2.2.2. Gradient penalty of the contrastive real images

We improve Hinge loss [9] to train the Du and G more ef-
fectively and stabilize the training process. At every training
step, we updateDu twice and then updateG once. Specifical-
ly, at step t, we first search for the contrastive real imagesMcr

and contrastive fake images Mcf from a batch of fake images
generated by Gt. Then we update the current Du

t to D
′u
t by

normal Hinge Loss:

LD
′u
t

= Ex∼Pdata
[max(0, 1−Du

t (x))]

+Ex̂∈Mcf
[max(0, 1 +Du

t (x̂))],
(7)

where x̂ is a fake image. In practice, the normally updated
D

′u
t may undervalue a subset of the contrastive real images

Ncr ⊆ Mcr to be less than α. The undervaluation of the con-
trastive real images can cause gradient increase or even gra-
dient explosion, thus causing the training instability of GAN.
Therefore, we punish the undervaluation of Ncr and update
the D

′u
t to be Du

t+1 with the following loss:

LDu
t+1

= Ex̂∈Ncr [(α−D
′u
t (x̂))σ(βDu

t (x̂))], (8)

where the σ is the sigmoid function, and the value of σ(·)
is the weight of this punishment. The larger value of Du

t (x̂)
means the higher realism of the fake image x̂. The hyper-
parameter β is used to differentiate the weight values.

Moreover, we improve the adversarial Hinge loss to up-
date the generator with the updated Du

t+1:

LGu
t+1

= Ez∼P(z)
[max(0, γ −Du

t+1(Gt(z)))]

+Ez∼P(z)
[max(0, Du

t+1(Gt(z))− 1)],
(9)

where γ is an adaptive parameter and we clip it to be 0.5 ≤
γ ≤ 1.0. For a batch of k real images x ∼ Pdata, we set γ to
be the smallest value of Du(x). In the above adversarial loss,
we promote the value of Du(G(z)) to be between γ and 1.
This approach can reduce the distances between Du(G(z))
and Du(x), thus reducing the differences between the fake
and real images.

2.3. Multi-level images similarity (MLIS)

We compute multi-level images similarity loss to promote the
real and fake similarity at both image and object levels. Be-
fore computing the similarity, we train the discriminator net-
work to extract features that can reflect the differences be-
tween real and fake images. The computation approach of



Fig. 3. The computation approach of MLIS and the discrimi-
nator networks.

MLIS and the discriminator networks are shown in Fig. 3.
We use Siamese-structured networks as the image feature ex-
tractors. The networks share the layers and parameters for
obtaining the 4×4×C feature maps with the conditional and
unconditional discriminators.

2.3.1. Training of discriminator

We construct positive and negative samples and use triplet
and center losses to train the discriminator networks in Fig. 3.
Our goal is to reduce the distances between real and positive
samples and increase the distances between real and negative
samples.

For a real image IRi , the positive samples include m im-
ages with high realism and consistent semantic with IRi , and
the negative samples include m images with low realism and
inconsistent semantic with IRi . We input IRi and all the pos-
itive and negative samples into the discriminator network in
Fig. 3 and generate output values. The output value of IRi is
Vri, and the output values of the positive and negative samples
are Ωp and Ωn, respectively. We compute the absolute differ-
ences between Vri and Ωp and represent the largest difference
value as Vp. Similarly, we compute the absolute differences
between Vri and Ωn and represent the smallest difference val-
ue as Vn. (See more details in the supplementary material.)

To train the discriminator, we compute the triplet loss to
make the maximum distance between the IRi and the posi-
tive samples to be still smaller than the minimum distance
between the IRi and the negative samples:

Ltrip = max(0, Vp − Vn + θ), (10)

where θ is the margin of the triplet loss and we set θ = 0.1. In
our implementation, computing the center losses can improve
the differentiation ability and robustness of the discriminator

network:

Lc1 =
1

m

m∑
j=1

‖| Ωpj − Vri |‖22, (11)

Lc2 =
1

m

m∑
j=1

‖| Ωnj−Vri | −cn ‖22, cn =
1

m

m∑
k=1

| Ωnk−Vri |

(12)
where cn is the mean distances between Vri and Ωn.

2.3.2. Multi-level images similarity

As shown in Fig. 3, for real and fake image similarity, we
first feed the 256 × 256 × 3 real and fake images into the
discriminator network and extract 4× 4×C feature maps by
several down-sampling layers and convolution layers, where
C is the number of channels. The 4× 4×C feature maps are
then processed by other two convolution layers with kernels
of 3 × 3 and 4 × 4, respectively. Finally, we compute the
absolute differences between the real and fake output values
to get the images similarity loss Limg.

For the similarity of real and fake foreground objects, we
first use YOLOv3 [16] as an object detector to detect N fore-
ground objects in the real images, where N is a variable and
N ≥ 1. We also use the Non-max suppression technique to
merge the redundant detected positions. We then extract the
object region features from the fake images using the same
positions as detected in the real images (dashed orange boxes
in Fig. 3). For each real and fake object region, we extract
a feature of 255 dimensions by YOLOv3 and use an aver-
age pooling layer to reduce the feature dimension to a single
value. Finally, we compute the mean absolute differences be-
tween the real and false feature values to get the real-fake
object similarity loss Lobj.

In conclusion, the overall objective loss functions for the
training of the two-way discriminators and the generators are:

LD = LDc +LDu +λ3LD′u +λ4Ltrip+λ5(Lc1+Lc2) (13)

LG = LGc + LGu + λ6Limg + λ7Lobj (14)

whereLDc is the training loss forDc using the proposed judg-
ments in DSCD, and LGc is the adversarial loss provided by
Dc to train the generators. (See more details in the supple-
mentary material.)

3. EXPERIMENTS

We use Microsoft COCO 2014 [17] (MSCOCO14) to evalu-
ate the performance of our proposed method and other state-
of-the-art methods. We use Inception score [18], Fréchet in-
ception distance [19] to evaluate the performance of the ex-
perimental methods. Note that lower FID indicates higher
image quality and diversity. Our experiments are conducted
on the GPU of GeForce RTX 3090Ti with a memory capacity
of 24GB.
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Fig. 4. Comparison of the resulting images of AttnGAN [1], DMGAN [2], and our improved versions on the MSCOCO14
dataset.

Table 1. Performance of different text-to-image generation
methods on two evaluation metrics.

Method Venue Year IS↑ FID↓
AttnGAN [1] CVPR 2018 25.89 33.10

AttnGAN+ [1] CVPR 2018 26.43 31.87
DMGAN [2] CVPR 2019 30.49 32.64
ObjGAN [3] CVPR 2019 27.37 25.85

AttnGAN+OP [8] ICLR 2019 24.76 33.35
CPGAN [4] ECCV 2020 52.73 48.87

AttnGAN+CL [20] arXiv 2021 25.70 23.93
DMGAN+CL [20] arXiv 2021 33.34 20.79
AttnGAN++Ours ICME 2022 31.70 19.05
DMGAN+Ours ICME 2022 37.23 18.76

3.1. Quantitative and qualitative evaluations

We first improve the performance of AttnGAN [1] to
AttnGAN+ by using transformer as the text encoder. Then we
apply all our proposed modifications of discriminators to the
baseline methods of AttnGAN+ and DMGAN [2]. Results in
Table 1 demonstrate that our proposed modifications can sig-
nificantly improve the performance of the baseline methods
to relative high levels among the state-of-the-art methods. We
improve the IS scores of the two baseline methods by 19.93%
and 22.10%. The FID scores of the two baseline methods
are reduced by 63.43% and 73.98%. According to the princi-
ples of IS and FID, IS does not penalize the intra-class mode
collapse of the generated images, while FID is more sensi-
tive to the diversity of the generated images. Therefore, we
think FID can better reflect the diversity of the fake images
and real-fake images similarity. Although our method does
not reach the highest IS as CPGAN [4], we have much better
performance on the more reliable FID score. Moreover, our
improved version of DMGAN reaches the best FID score than
all the comparative methods.

From the qualitative results in Fig. 4 we can see that our

Table 2. The ablation study results on the performance of
different proposed modules.

Method IS↑ FID↓
AttnGAN+(Baseline) 26.43 31.87

Baseline+CSGP 28.62 26.35
Baseline+DSCD+CSGP 29.97 23.83

Baseline+DSCD+CSGP+MLIS 31.70 19.05

improved methods can generate more realistic and reasonable
images than the baseline methods. Please refer to the sup-
plementary material for the qualitative comparisons between
some state-of-the-art and our improved methods.

3.2. Ablation study

We conduct the ablation studies on the validation set of M-
SCOCO14 to show the effectiveness of each proposed modi-
fication. Our baseline method is our improved version of At-
tnGAN [1] which uses three stacked GANs to generate fake
images with the final size of 256 × 256 × 3. Starting with
the baseline method AttnGAN+, we add one of the three pro-
posed modifications of CSGP, DSCD, and MLIS to the previ-
ous method at each time. The quantitative results are shown
in Table 2.

Compared with the baseline method, the proposed CSGP-
based unconditional discriminator gains the maximum im-
provements on IS and FID scores. The CSGP strategy im-
proves the IS by 2.19 points and reduces the FID by 5.52
points. The enhancement on IS verifies that the contrastive
searching method can better evaluate the realism of the fake
images. Meanwhile, the enhancement on FID proves that the
proposed gradient penalty can help relieve the mode collapse
caused by gradient instability. Adding the DSCD to the con-
ditional discriminator further improves the IS by 1.35 points
and reduces the FID by 2.52 points. The results prove that pe-
nalizing the combination of fake images and the mismatched



texts can improve the diversity of the generated images. Fi-
nally, adding the MLIS to the experimental model reduces
the FID by 4.78 points. This result demonstrates that the pro-
posed MLIS can effectively promote the similarity between
real and fake images and objects, and the trained discrimina-
tor can correctly reflect the differences between real and fake
images.

4. CONCLUSIONS

In this paper, we focus on improving the discriminators in
GAN for text-to-image generation task. First, we propose
diversity-sensitive conditional discriminator to alleviate the
mode collapse of the fake images. Then we propose a con-
trastive searching gradient penalty strategy for the uncondi-
tional discriminator to judge the realism of fake images and
stabilize GAN’s training. Finally, we propose a multi-level
images similarity loss to promote the real and fake similari-
ty at both image and object levels. The experimental result-
s demonstrate the proposed three modifications can promote
GAN to generate better scene images.
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