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Towards High-Quality Photorealistic
Image Style Transfer

Hong Ding, Haimin Zhang, Gang Fu, Caoqing Jiang, Fei Luo, Chunxia Xiao and Min Xu, Member, IEEE

Abstract—Preserving important textures of the content image
and achieving prominent style transfer results remains a chal-
lenge in the field of image style transfer. This challenge arises
from the entanglement between color and texture during the style
transfer process. To address this challenge, we propose an end-to-
end network that incorporates adaptive weighted least squares
(AWLS) filter, iterative least squares (ILS) filter, and channel
separation. Given a content image (C) and a reference style
image (S), we begin by separating the RGB channels and utilizing
ILS filter to decompose them into structure and texture layers.
We then perform style transfer on the structural layers using
WCT2 (incorporating wavelet pooling and unpooling techniques
for whitening and coloring transforms) in the R, G, and B
channels, respectively. We address the texture distortion caused
by WCT2 with a texture enhancing (TE) module in the structural
layer. Furthermore, we propose an estimating and compensating
for the structure loss (ECSL) module. In the ECSL module, with
the AWLS filter and the ILS filter, we estimate the texture loss
caused by TE, convert the loss of the structural layer to the loss of
the texture layer, and compensate for the loss in the texture layer.
The final structural layer and the texture layer are merged into
the channel style transfer results in the separated R, G, and B
channels into the final style transfer result. Thereby, this enables
a more complete texture preservation and a significant style
transfer process. To evaluate our method, we utilize quantitative
experiments using various metrics, including NIQE, AG, SSIM,
PSNR, and a user study. The experimental results demonstrate
the superiority of our approach over the previous state-of-the-art
methods.

Index Terms—photorealistic image style transfer, image
smoothing, channel separation, texture synthesis.

I. INTRODUCTION

Image style editing is a fundamental task in the field of
image processing. One example of image style editing is
artistic style transfer, which involves transferring color and tex-
ture between a photo and a reference painting image [1]–[5].
Another example is photorealistic image style transfer, which
transfers the color of a reference style image to a content image
while preserving the textures of the content image [6]–[14].
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Fig. 1. Comparison with state-of-the-art methods. The first row is the face
image cases, and the second row is the scene-level image cases. (a, b) Face
content image (C, top), face reference style image (S, bottom), and their
masks (at the upper left corner). (f, g) Scene-level content image (C, top) and
the scene-level reference style image (S, bottom). (c, h) Our results of the
facial image case and the scene-level image case, respectively.(d, e) Results
by Ding et al. [12], and Li et al. [9], respectively. (i, j) Results by Wen et al.
[15], and Hong et al. [11], respectively. Our model produces better results by
utilizing hybrid filters and channel separation.

One major difference between artistic image style transfer and
photorealistic image style transfer is that the artistic image
style transfer is to keep only the basic textures of the content
image C. The result is not photorealistic, but it is artistic. The
photorealistic image style transfer is to maintain the important
textures of C, the result has a photorealistic effect. However,
the color and texture of images are mixed. This kind of mixing
leads to the blurring between texture preservation and style
transfer. Achieving good photorealistic image style transfer
results depends on completely replacing the original style of C
with the reference style of S, while maintaining the important
textures of C. These two lines of methods have emerged as
typical approaches in the image style transfer methods. The
first line of approach [1], [2], [16], employs Gram matrix and
a feature matrix to effectively distinguish style and texture,
and produces artistic style transfer results. However, due to
the inclusion of C content and S reference style in the loss
function, this approach leads to the entanglement between
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the style and the texture, and fails to produce good image
style transfer results. Subsequent methods [6], [17] have been
proposed to improve upon Gatys’ work [1].

The second line of significant approaches [4], [18] is the
universal style transfer method, which employs texture trans-
formation to transfer the reference styles to the content im-
ages. These universal style transfer methods embed whitening
and coloring transforms (WCT) into an image reconstruction
network. WCT can perform image style transfer and provide
computing speed advantages. However, WCT fails to keep
the textures of content images well. Various techniques have
been developed to improve WCT for generating artistic or
photorealistic images [8]–[12], [15], [19].

The conventional methods and their subsequent variations
often compromise the preservation of texture details during
color transfer, as demonstrated in Fig. 1 (e), (i), and (j). To
tackle the challenge of mutual entanglement between color
and texture, Ding et al. [12] proposed an adaptive filter and
channel separation (AFCS) framework. The AFCS method
successfully separates the structural layer and the texture
layers of both the content and reference style images. It
succeeds in avoiding entanglement between color transfer
and texture preservation while achieving more photorealistic
color transfer results. Nevertheless, it is worth noting that the
textures extracted by the AWLS filter [12] in this approach
tend to retain some original styles of the content image. This
unclean feature extraction potentially may lead to incomplete
image style transfer, as shown in Fig. 1(d) and Fig. 7(c).

This paper focuses on achieving high-quality photorealistic
image style transfer. The main idea is conducting style transfer
on the structural layers of C and S to avoid destroying the
C texture extraction. We employ AWLS filter and ILS filter
to extract C textures. This approach not only captures the
essential textural details and boundary information of C but
also effectively eliminates the original color of C in the texture
layer. This texture extraction effect cannot be obtained only
by AWLS or ILS filters.

In this paper, we design four visual ablation studies for our
method, including the ILS filter, the TE (texture enhancing)
module, the ECSL (estimation and compensation of the struc-
tural layer texture loss) module, and RGB channel separation,
as shown in Fig 7, Fig. 9, Fig. 12, and Fig. 10. We select
some representative experiments to illustrate the effectiveness
of these modules. The existing quantitative evaluations pri-
marily evaluate the relation between the content image and
the output image, such as SSIM (structural similarity index)
and PSNR (peak signal-to-noise ratio). They do not consider
the significance of image style transfer. Consequently, we
only show the effectiveness of these modules through visually
significant effects. In the experimental part (Section IV), we
use the visual evaluations and add quantitative evaluations
in more experiments. We also add a user study to evaluate
the significance of image style transfer, and obtain more
comprehensive evaluation results.

This paper extends the work of Ding et al. [12]. The
main differences between this paper and that of [12] are the
following aspects: (1) We in this paper improve the problem
of incomplete image style transfer in the work of Ding et al.

[12]. (2) Our approach leverages both the AWLS filter [12]
and ILS filter [20] to extract the content image textures that
are independent of the content image style. (3) We present
an estimation and compensation of structural layer texture
loss (ECSL) module to flexibly adjust the illumination of the
photorealistic image style transfer results.

We evaluate our method on a variety of images collected
from the Internet and public datasets, including face images
and scene-level images. The datasets used for testing include
the IMDB-WIKI (Internet movie database - Wikipedia) dataset
[21], the COCO (microsoft common objects in context) dataset
[22], and the AFLW (annotated facial landmarks in the wild)
dataset [23]. These evaluations demonstrate the effectiveness
of our proposed method. The main contributions of our work
can be summarized as follows.

(1) We introduce a novel approach which effectively ad-
dresses both photorealistic image style transfer and texture
preservation independently, thereby reducing the entanglement
of color and texture.

(2) We propose a hybrid filter based on the adaptive
weighted least squares filter and the iterative least squares. We
use the hybrid filter to perform image smoothing for C and
S, and obtain proper illumination in the photorealistic image
style transfer results.

(3) We propose a TE module and an ECSL module to obtain
the comprehensive preservation of C textures while effectively
excluding the original style of C in the process of image style
transfer.

II. RELATED WORK

Artistic style transfer. Gatys et al. [1] used image rep-
resentations extracted by CNNs optimized for artistic style
transfer. Nevertheless, their method relies on a time-consuming
iterative optimization process, which constrains its practicality.
In contrast, Huang et al. [7] introduced a straightforward
yet effective method that facilitates real-time arbitrary style
transfer. Yao et al. [3] proposed multiple texture maps to
capture various stroke patterns, enabling the integration of
diverse strokes into different spatial regions of the output
image. Nevertheless, these two approaches fail to work well
when performing photorealistic image style transfer due to
their limited texture-preserving capabilities for C. To address
this problem, Zhao et al. [24] introduced a method to per-
form artistic image style transfer using automatic semantic
segmentation module produced by CNN and soft masks. Their
approach eliminates more details from the content image, and
obtains a more noticeable artistic style effect. Chen et al. [25]
introduced a method for image sentiment transfer by using
the filtered visual sentiment ontology (VSO) dataset. However,
this approach has limited applicability due to its reliance on
specialized datasets.

Photorealistic image style transfer. The essence of pho-
torealistic image style transfer is color transfer. Dissimilar
to artistic style transfer, which primarily preserves the basic
texture of C, photorealistic image style transfer preserves
the important texture of C in the color transfer result. To
achieve photorealistic image style transfer, many approaches
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have been explored in the literature. Luan et al. [6] introduced
a method that combined content loss and style loss with
masks. However, the tradeoff between the two losses makes
it fail to produce both texture preservation and remarkable
color transfer effect. Li et al. [18] proposed PhotoWCT to
maximize stylization effects, yet this approach produces blurry
artifacts because of the texture loss issue. Yoo et al. [8]
proposed WCT2, incorporating wavelet pooling and unpooling
techniques for whitening and coloring transforms. However,
this algorithm exhibited shortcomings in generating natural
boundaries. Li et al. [9] introduced a data-driven fashion
for transferring various styles at different levels. An et al.
[10] performed style transfer through photoNet and multiple
style transfer modules. Later, they introduced ArtFlow [19]
to prevent content leakage in the image style transfer. Hong
et al. [11] brought domain-aware style transfer networks. Wen
et al. [15] proposed CAP-VSTNet (Content Affinity Preserved
Versatile Style Transfer) framework for versatile style transfer.
However, these methods have suffered from texture loss of
C and results blurring. Addressing the challenge of mutual
entanglement between color and texture, Ding et al. [12]
introduced the AFCS framework. Nonetheless, a drawback
of this approach is that the textures extracted by the AWLS
filter tend to remain some style of the original C, leading
to incomplete style transfer in specific cases. On the other
hand, makeup transfer approaches [26]–[30] primarily focus
on transferring elements such as eye shadow, lipstick, and
skin color, without addressing background alterations. These
approaches fail to deal with image pairs lacking accurate
dense correspondences. They also have limitations in retaining
content textures. In contrast, in our work we introduce a novel
method by independently performing color transfer and texture
preservation with hybrid filters to deal with these issues.

Edge-preserving image smoothing. Methods based on
weighted averages, as demonstrated by Dai et al. [31] and
Tan et al. [32], have shown significant development over the
past few decades. Farbman et al. [33] introduced an edge-
preserving smoothing operator rooted in the weighted least
squares (WLS) optimization framework. WLS filter can be
adjusted by using multiple parameters to achieve various
degrees of smoothing. However, this method lacks adaptability
of parameter adjustments for different images. Barron et al.
[34] presented a bilateral solver to expedite WLS smooth-
ing process. Nevertheless, this approach is suitable only for
Gaussian guidance weights and will produce artifacts in the
smoothed images. Liu et al. [20] introduced an effective
approach called iterative least squares (ILS) filter, which em-
ployed global optimization to achieve edge-preserving image
smoothing without additional image guidance information.
The method proposed in Liu et al [20] yields filtered image
structural layers with more intricate details, compared to the
approach of Farbman et al [33]. Fanetal et al. [35] proposed a
normal decoupled learning module for image smoothing, and
later introduced an unsupervised learning method [36] to im-
prove the image smoothing. However, most of the previously
mentioned methods are limited to specific applications due
to their inherent fixed smoothing characteristics. Additionally,
Yim et al. [37] have focused on adjusting brightness, contrast,

and other settings to create smoothing effects. Therefore, in
this paper we have developed an adaptive formula for selecting
the parameter L in the work of Farbman et al [33]. This
formula guides image smoothing specifically for the purpose
of photorealistic image style transfer.

III. METHODOLOGY

In this paper, we propose a novel method to produce high-
quality photorealistic image style transfer results. We introduce
an adaptive weighted least squares (AWLS) filter to obtain
illumination in image smoothing results, as shown in Section
III-A. We use the ILS filter to extract the structural layers
and texture layers of C and S. Then we use the hybrid filter
including the AWLS filter and the ILS filter to extract the
image textures of C, as presented in Section III-B. This is
the key step to extract the important textures of C without
extracting the original color of C, as shown in the formation
process of Tj (j ∈ {R,G,B} channel) in Fig. 2. Specifically,
we perform color transfer in the two structural layers from
the ILS filter, as shown in Section III-C. Then we utilize the
AWLS filter to perform texture enhancing (TE) to repair the
unnatural border of the output from WCT2, as presented in
Section III-C3, and carry out estimation and compensation of
the structure layer texture loss (ECSL) via the hybrid filters, as
introduced in Section III-D. In the ECSL module, we estimate
the texture loss of the structural layer, caused by TE, and
compensate for the texture loss in the texture layer. Finally,
we obtain the photorealistic image style transfer result O by
merging the outputs Oj (j ∈ {R,G,B} channel), as presented
in Section III-E.

A. Adaptive weighted least squares filter (AWLS)

We use the AWLS filter [12] in the TE module and the
ECSL module in Fig. 2. Weighted least squares (WLS) [33]
aims to generate a new image denoted as u from an input
image f . u is as close as possible to f , and, at the same time,
is as smooth as possible every-where, except across significant
gradients in f . Mathematically, this can be expressed as the
energy minimization of the following objective function.

󰁓
s

󰀓
(us − fs)

2 + λ(ax,s(f)(
∂u
∂x )

2
s + ay,s(f)(

∂u
∂y )

2
s)
󰀔
, (1)

where s represents the spatial location of a pixel. The primary
objective of the data term (us − fs)

2 is to minimize the
difference between u and f , while the second (regularization)
term focuses on achieving smoothness by minimizing the
partial derivatives of u. λ is responsible for the balance
between the two terms. The smoothness weights ax,s(f) and
ay,s(f) are defined as follows.

ax,s(f) =
󰀓
| ∂l∂x (s)|

α′
+ ε′

󰀔−1

,

ay,s(f) =
󰀓
| ∂l∂y (s)|

α′
+ ε′

󰀔−1

,
(2)

where l is the log-luminance of the input image f , α′ is
a parameter between 1.2 and 2.0, and it determines the
sensitivity to the gradients of f , while ε′ is a small constant
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Fig. 2. Overview of our framework. First, our model takes a content image C, a reference style image S, and their corresponding mask maps MC and MS as
inputs. The ILS filter is employed to extract the R, G and B structural layers of C and S (I(Cj) and I(Sj), j ∈ {R,G,B} channel). Then we input I(Cj),
I(Sj), MC , and MS into the WCT2 model [8] to transfer the style of the three structural layers, and use TE module to enhance the texture for the WCT2

output to get Sj . We use the ECSL module to estimate and compensate for the texture loss caused by TE. Next, for texture preservation, we assign weights
to the texture layers extracted by ILS filter (T′(Cj)) and the ECSL output, to obtain the final texture Tj . Finally, we obtain the photorealistic color transfer
result Oj by merging Sj and Tj .

that prevents division by zero in areas where f is constant. In
fact, we can utilize other matrices instead of the parameter l.

If the function M(f) presents a source image for the affinity
matrix, which has the same dimension as the input image f .
The solution for Eq. 1 is

(I + λM(f))u = f, (3)

where the default value M(f) is log(f), I is the unit matrix.
The research [12] shows that when we smooth C and S

with the WLS filter, the parameter M of the WLS filter can
affect the illumination of image smoothing and style transfer
results, as shown in Fig. 3 and Fig. 4. At present, we fail to
find existing methods designed to smooth a pair of images
(C and S) at the same time in the photorealistic image style
transfer process. To address this limitation, we introduce an
adaptive weighted least squares (AWLS) filter to adaptively
fine-tune the key parameter L (f) of the WLS filter for C

and S to obtain style transfer result with proper illumination.
When we employ the illumination channel, L channel from
LAB color space, to perform image smoothing with AWLS,
the result suffers from drawbacks, such as frequently blurring
the boundaries. Therefore, we consider both log(L(f)) and
log(f) to guide the image smoothing, where L(·) denotes the
luminance of an image.

Both S and C are inputed into Eq. (3) as f . WLS filtering
is performed channel-by-channel in RGB spaces. When f is
C, we set L(Cj) as the weighted sum of L(C) and Cj:

L(Cj) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

log(L(C)),∆L = 1
log(Cj),∆L < 0.5
α× log(L(C)) + (1− α)× log(Cj),
0.5 ≤ ∆L < 1,

(4)

where j ∈ {R,G,B}, and

α = β × (∆L
0.5 − 1). (5)

Here β is a trigger whose value is 0 or 1. When ∆L ≥ 0.5,β
=1, and when ∆L < 0.5, β=0. ∆L =|mean(L(C)) −
mean(L(S))|. mean(•) denotes the mean value of all ele-
ments in a matrix. The constant 0.5 is a domain value which is

(a) Input (b) Without L (c) With L

Fig. 3. Influence of the L channel in AWLS filter. (a) Input image. Smoothing
an image with its L channel, we can obtain the changed illumination
information, as in the top of the fruits of (c). In (b), without the L channel
for guided smoothing, the result is mainly to remove image textures, with less
illumination variations than in (c).

(a)S (b) C (c) Without L (d) With L

Fig. 4. Effect of ∆L in Eq. 4. (a) Reference style image. (b) Content image.
When the luminance L of C and S, are similar (∆L < 0.5), we obtain better
contours without L than with L (see the fruits’ shadows circled in black).

used to control the selection between log(L(C)) and log(Cj).
This constant is set by experimental experience. Furthermore,
because the maximum of ∆L is 1, according to Eq. 5, the
maximum of α is 1.

The smoothing results of the three channels are merged
into the final smoothing results. When f is R, we compute
L(S) like L(C). We leverage L(C) to guide the image
smoothing, which preserves not only the image color, but also
the brightness variation information. We show the influence of
L in Eq. 4 in Fig. 3 and Fig. 4 using the AFCS method [12].
This influence will exist as long as we use the WLS filter for
photorealistic image style transfer.

B. Hybrid Filter Composed of ILS and AWLS filters

In this section, we first review the ILS filter, then compare
it with the AWLS filter, and finally mix the two filters to avoid
the problem of incomplete transfer, as shown in Fig. 1(d).
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(a) Input (b) AWLS-s (c) ILS-s (d) AWLS-f (e) ILS-f

Fig. 5. Image smoothing comparison. (a) Input image. (b, d) Structure and texture layers extracted by AWLS filter, respectively.
(c, e) Structure and texture layers extracted by ILS filter, respectively.

1) ILS: The ILS filter [20] is from the minimization of the
following objective function.

E(u, f) =
󰁓
s

󰀣
(us − fs)

2 + λ
󰁓

∗∈{x,y}
φp(∇u∗,s)

󰀤
, (6)

where f is an input image, u is the smoothed image, s denotes
a pixel location, and ∇u∗(∗ ∈ {x, y}) represents the gradient
of u along horizontal and vertical directions, respectively. The
penalty function φp(·) is defined as

φp(x) = (x2 + ε)
p
2 . (7)

The norm power p is typically set as 0 < p ≤ 1 for edge-
preserving smoothing, and ε = 0.0001. The solution for Eq. 6
is

un+1 = F−1

󰀕
F(f)+λ

2 F(∇x)·F(µn
x )+F(∇y)·F(µn

y )

F(1)+ c
2 ·λ(F(∇x)·F(∇x)+F(∇y)·F(∇y)

󰀖
, (8)

where F(·) and F−1(·) are the fast Fourier transform and
inverse fast Fourier transform operators, respectively. F(·)
denotes the complex conjugate of F(·), c = pε

p
2−1. The

addition, multiplication and division are all element-wise op-
erations.

2) Comparison between ILS and AWLS filters: In Eq. 6, the
second term of the loss is 1NF (normal form) in the case of ε
= 0 and p= 1. In Eq. 1, the second term of loss is 2NF in the
case of no weights applied. Therefore, Eq. 6 preserves more
edge details because 1NF is a looser constraint than 2NF. [38]

Therefore, the texture layer from the ILS filter keeps rela-
tively fewer textures and nearly no color information. Even
smoothing an image with bright colors, the ILS filter can
extract a texture layer with less color information, as shown
in Fig. 5. Therefore, using the ILS filter to smooth the image
can reduce the problem of incomplete style transfer, as shown
in Fig. 7. More visual comparisons between the AWLS filter
and the ILS filter are shown in Fig. 11.

3) Hybrid filter composed of ILS filter and AWLS filter:
When C and S are input, the output W of WCT2 [8] model
will show artificial boundaries that need to be repaired. The
texture layer of C from the ILS filter keeps little boundary
information of C, and is not suitable for repairing artificial
boundaries, such as color overflow and unnatural boundaries.
In contrast, the texture layer of C from the AWLS filter
contains more textures, including boundary information, and
is suitable for image boundary repair. However, this approach
also introduces some original colors of C into the repaired

results. Therefore, in this paper we propose a hybrid filter
composed of AWLS filter and ILS filter. The texture layer
from this hybrid filter keep little the original image colors,
and can repair the unnatural boundaries of W .

During the style transfer process, we use the ILS filter to
extract the structural layers from S and C. The WCT2 [8]
model is then utilized to transfer the style of S structural layer
to C structural layer. Subsequently, we use the AWLS filter to
repair the artificial boundaries caused by WCT2. However, it
should be noted that due to the difference in principle and the
effect between the AWLS filter and the ILS filter, some useful
textures in the structural layer may be lost in the repair process.
Therefore, in the texture preservation stage, the ILS filter is
employed to extract the texture layer and the AWLS filter is
used to compensate for the lost useful texture in structural
layer repair.

In Fig. 6, we illustrate the sequential steps for obtaining
the j-channel final textures in the photorealistic image style
transfer. Specifically, to initiate the process, we employ the
WCT2 method to transfer the style of S to C to generate
Wj ; we repair Wj using TE module (see Section III-C3) to
obtain W ′

j ; we utilize AWLS filter to extract W(W ′
j), the

structural layer of W ′
j ; we obtain T(W ′

j) (the texture layer
of W ′

j) by using W ′
j −W(W ′

j). Finally, we perform weighted
fusion of T(W ′

j) and T(Cj) to obtain the final texture Tj of
the j channel. The procedures are shown in Fig. 6. The orange
dotted rectangle is the ECSL module. The theoretical reason of
ECSL is illustrated in Section III-D. The photorealistic image
style transfer comparisons between the AFCS method [12] and
ours are shown in Fig. 7.
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Fig. 6. Overview of our texture preserving. The dotted rectangle in orange
is the ECSL module.

C. Channel-separated style transfer

1) Encoder and decoder architecture: We employ encoder
and decoder architecture in WCT2 [8] for color transfer. The
encoder utilizes the Image Net-pretrained VGG-19 network,
incorporating Haar wavelet pooling [8] from the conv1 1 layer
to the conv4 1 layer. The decoder mirrors the structure of
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(a) S (b) C (c) without ILS (d) with ILS

Fig. 7. Ablation study for ILS filter. (a) Reference style image. (b) Content
image. (c) Style transfer result without the ILS filter. (d) Style transfer result
with the ILS filter. By adding the ILS filter in the image style transfer model,
we can get the final texture layer without the original color of C, and obtain
a better photorealistic image style transfer result.

the encoder. With a noteworthy texture enhancing module,
we augment the decoder with texture enhancing (TE) module
placed behind the convolutional layer in each decoder layer.
This augmentation addresses the issue of unnatural boundary
effects as illustrated in Fig. 8.

2) Channel separation photorealistic image style transfer
[12]: To avoid the entanglement among the R, G, and B
channels, we perform style transfer in each channel (R, G,
and B) in the structural layers of C and S, respectively.
Then we achieve style transfer result of the structural layer
Sj , where j ∈ {R,G,B} channel, as illustrated in Fig.
2. While the concept of separating RGB channels has been
employed in certain color-related tasks [39], [40], as far as
our knowledge extends, we pioneered the application of a
deep learning network based on color channel separation in
the realm of photorealistic image style transfer. This approach
is inspired by the ′′divide-and-grow′′ concept. We employ
semantic segmentation to derive masks MC and MS for C

and S, respectively. For each R, G, or B channel, we perform
color transfer by feeding the R, G, and B components of I(C)
and I(S), along with their respective masks, into the encoder-
decoder modules (as depicted in Fig. 2). The fundamental
principle guiding this color transfer process is rooted in the
principles of WCT [1].

DFR

Decoder

cc

R C

MCMR

S’
C

FC

O

SC_R 

SC_G

SC_B

SR_G 

SR_B

SR_R

Content feature 
extraction

R channel 
style transfer 

Encoder

SR SC

MR
MC

(a) Image decoupling module

(b) RGB Channel-wise color transfer module

(c) Feature Extraction module

(d) Merging module

MR
MC

MR
MC

MFE

++
Filter

Feature_ILS_R

--

Semantic segmentation

ILS

ILS WLS
+ILS

Filter Filter

Feature_WLS_R

Conv
1_1

Conv
1_2

C
R

WCT Wavelet Pooling Wavelet Unpooling Texture Enhancing

Conv
2_1

Conv
2_2

Conv
3_1

Conv
3_2

Conv
3_3

Conv
3_4

Conv
4_1

Conv
4_1

Conv
1_1

Conv
1_2

Conv
2_1

Conv
2_2

Conv
3_1

Conv
3_2

Conv
3_3

Conv
3_4

Color R channel 
style transfer 

F_WLS_C_R F_ILS_R

MR
MC

MR
MC

C_R R_R

C_G R_G

C_B R_B

MC C

RMR G channel 
style transfer 

F_WLS_C_G F_ILS_G

DFR

B channel 
style transfer 

F_WLS_C_B F_ILS_B
DFR

F_WLS_C F_ILS

DFR:Double feature 
repaired

MFE:Merging Feature enhancement

SWCT2&Repair

CR
MR
MC

MR
MC

C_R R_R

F_WLS_CF_ILS

FR1

FEnhMRe
MC

ILS
CR ReRMC C

ReMRe

F_ILS

DFR: double filter repaired MFE: merge feature e  

F_WLS_C:   feature WLS content

F_ILS_Re: feature ILS reference

SWCT2&Repair: simple wct2 + repaired 

𝕀(CR)
𝕀(ReR)

MRe
MC

MRe
MC

CG ReG

CB ReB

cc

Merge

FR:feature repaired

WCT

𝔽'(CR)ILS

F_S_R:compensatory feature of the structure layer

𝔽(W”R) FR

Merge
FG

Merge
FB

DecoderEncoder

OR 

OG 

OB 

O

SR

SG

SB

����𝔽�𝕀�����𝕀𝕁𝕂𝕃𝕄𝕆
𝕊𝕋𝕌𝕍𝕎𝕏𝕐 

FEnhILS 𝕀(CG)
𝕀(ReG)

WCT

𝔽'(CG)ILS
𝔽(W”G)

FEnhILS 𝕀(CB)
𝕀(ReB)

WCT

𝔽'(CB)ILS
𝔽(W”B)

++

++

++

FEWCTMRe
MC

Re
C

𝔽(W"j)

𝔽'(Cj)ILS
Fj++

W AWLSW"

HH,HL,LH HH,HL,LH HH,HL,LH

FEMRe
MC

ILS
CR ReRMC C

ReMRe

𝕀(CR)
𝕀(ReR)

MRe
MC

MRe
MC

CG ReG

CB ReB

cc

Merge
WCT

𝔽'(CR)ILS
ECSL FR

Merge
FG

Merge
FB DecoderEncoder

OR 

OG 

OB 

O

SR

SG

SB

FEILS 𝕀(CG)
𝕀(ReG)

WCT

𝔽'(CG)ILS
ECSL

FEILS 𝕀(CB)
𝕀(ReB)

WCT

𝔽'(CB)ILS
ECSL

++

++

++

ECSL module

Fig. 8. The structure of our used encoder-decoder network. We add a texture
enhancing operation after each convolution layer in the decoder [8].

When we perform style transfer from S to C, we extract the
texture tC of C from the decoder of WCT:

t′
C
= EC(DC)−1/2(EC)T tC, (9)

DC is a diagonal matrix with the eigenvalues of the covariance
matrix t′

C
(t′

C
)T ∈ RCh×Ch, and EC is the corresponding

orthogonal matrix of eigenvectors, satisfying t′
C
(t′

C
)T =

ECDC(EC)T . tC is the vectorized VGG texture of C. Ch
is the number of channels.

We transfer the color from S to C by

t′′
C
= ES(DS)−1/2(ES)T t′

C
, (10)

where t′′
C is the color transfer result, DS is a diagonal matrix

with the eigenvalues of the covariance matrix t′
S
(t′

S
)T ∈

RCh×Ch, and ES is the corresponding orthogonal matrix of
eigenvectors. t′′C = t′′

C
+ m, where m is the mean vector

of t′
C. We invert t′′

C to the decoder to obtain the color
transformation result.

When we perform style transfer from I(Sj) to I(Cj) (shown
in Fig. 2), we can get the color transfer result S′

j in the RGB
channel by replacing C with I(Cj), replacing S with I(Sj) in
Eq. 9 and Eq. 10, where j ∈ {R,G,B} channel.

3) Texture Enhancing (TE) with AWLS filter: WCT2 [8]
has unnatural boundary problems (see Fig. 9 (c) and (e))
caused by the biased style transfer claimed by [15], [19]. Our
method uses filters to process the textures of the input image
separately. We only perform color transer at the structural
layer. We use the TE module to enhance the color transfer
results of WCT2 in the structural layer. These two methods
enable us to improve the biased style transfer problem.

We repair the WCT2 output (W ) by replacing the AWLS
texture layer of W with that of C. We extract the structural
layer W(W ) of W using AWLS filter. Then, we extract the
texture layer T(C) of C using AWLS filter by C − W(C).
Finally, we fuse W(W ) and T(C) to generate W ′, the tex-
ture enhancing result of W . The texture enhancing can be
expressed as

W ′ = W(W ) + T(C) = W(W ) + C −W(C), (11)

where W(·) denotes the AWLS filter operator, W(z) and T(z)
are the structure and texture layers of an variable z using
AWLS filter, respectively.

We can set the weights of C and W(C) to get slightly
different results of T(C):

T(C) = k1 × C − k′1 ×W(C), (12)

where k1 and k′1 are the weights of C and W(C), respectively.
We also use the AWLS filter to obtain the texture layer T(W )
of W . According to Eq. 12, we can get T(W ) as follows.

T(W ) = k1 ×W − k′1 ×W(W ). (13)

We use the ILS filter to obtain C texture layer which has no
the original color of C:

T′(C) = k2 × C − k′2 × I(C), (14)

where I(·) denotes ILS operator, and I(z) and T′(z) are the
structure and texture layers of z using ILS filter, respectively.
k2 and k′2 are the weights of C and I(C), respectively. We
typically set k2 = k′2 = 1. We also use the ILS filter to obtain
the texture layer T′(W ) of W . According to Eq. 14, we can
get T′(W ) as follows.

T′(W ) = k2 ×W − k′2 × I(W ). (15)

Hence, when we use TE to repair Wj ( WCT2 output W in
j channel, as shown in Fig. 6), Eq. 11 can be rewritten as

Sj = W(I(Wj)) + I(Cj)−W(I(Cj)), (16)

where Sj is the TE repair result of the structural layer in the
WCT2 output in the j(j ∈ {R,G,B}) channels. Cj is the part
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(a) S (b) C, MC (c) Without TE (d) With TE

(e) Without TE (f) With TE

Fig. 9. Ablation study for Texture Enhancing (TE). (a) S , MS (at the upper
right corner). (b) C, MC (at the upper right corner). (c, d) Our style transfer
results for the structural layers without and with TE, respectively. (e, f) Our
final style transfer results without and with TE, respectively.

(a) (b) (c) (d)

Fig. 10. Ablation study for our method without and with RGB channel
separation. (a) (b) S, C, and their masks (at the upper left conner), (c) Result
of our method without RGB channel separation. (d) Result of our method
with RGB channel separation.

of C in j channel. W(I(Wj)) is AWLS structural layer of the
ILS smoothing result of Wj . I(Cj) is the structural layer Cj

from ILS filter, and W(I(Cj)) is the AWLS structural layer
of the ILS structural layer of Cj . Fig. 9(d) shows the visual
result of S. With the TE module, the results have more natural
textures.

The ablation experiment of channel separation is shown in
Fig. 10. Image style transfer based on channel separation can
obtain more uniform image style transfer results.

D. Estimation and compensation of the structural layer texture
loss (ECSL)

During the process of color transfer in structural layer,
repairing Wj from WCT2 with TE may lead to the loss of
textures in the structural layer. We estimate the texture loss,
convert the loss of the structural layer to the loss of the texture
layer, and compensate for the loss in the texture layer.

For the same image, we use WLS filter and ILS filter to
decouple it, and get different structural layer and texture layer.
However, the coupling result of structural layer and texture
layer obtained by WLS should be approximately equal to that
obtained by ILS filter. Hence, when we utilize AWLS filter
and ILS filter to smooth W , respectively, according to Eq. 12
and Eq. 14, we obtain this relation.

W(W ) + T(W ) ≈ I(W ) + T′(W ). (17)

The three filters shown on our paper are ILS filter, AWLS
filter with L, and AWLS filter without L, which are shown in
Section III-B. We analyze the main differences in these filters
through two representative examples, illustrated in Fig. 11. In

the first row, the images consist of color blocks with fewer
textures, and the second row is characterized by more textures
and fewer color blocks. In the first row, the smoothing of
the AWLS filter with L (denoted as AWLS1) is based on the
gradient of the image illumination, thereby yielding results
that accurately represent illumination variations. However,
illumination is only part of the image, so this approach may
introduce blurriness at boundaries, as shown in (b). Because
the texture layer equals to the input minus the structural
layer, the texture layer from this method retains boundary
information and some of the original input’s color, as shown
in (c).

In contrast, the AWLS filter without L (denoted as AWLS2)
employs the image itself for gradient, resulting in outcomes
unaffected by brightness variations and offering superior edge
preservation. Nevertheless, it has some shortcomings in cap-
turing the rich information of illumination change compared to
AWLS1, as indicated by (d). Furthermore, the texture extracted
by AWLS2 is fewer than that of AWLS1, as illustrated by
(e). In the second row, the input image is mainly textured
with fewer color blocks. The smoothing results of AWLS1

and AWLS2 are very similar to the texture extraction results
due to the weakening influence of brightness. Both methods
can preserve most of the details of the image.

In the case of the ILS filter, it employs the image itself
for gradient while incorporating an edge preservation factor p
(shown in Eq. 7). Therefore, the ILS filter produces smoothing
results with more edge preservation compared to AWLS1 and
AWLS2, as shown in (f). However, the texture retaining in the
texture layer from the ILS filter is considerably less than that
of AWLS1 and AWLS2, as shown in (g). In the texture layer,
the ILS filter removes more color of the original image, and
only purer texture details are available. Hence, the ILS filter
has better texture extraction ability than AWLS1 and AWLS2.

The ILS filter aims to find the gradient of image pixel values
and set the edge-preserving factor, resulting in a superior
smoothing effect for preserving image texture of edges. On the
other hand, AWLS1 relies on the image brightness information
to better preserve the overall brightness change of the image.
Consequently, we can obtain the following relations.

W(I(W )) ≈ W(W ),
W(I(C)) ≈ W(C).

(18)

We use the difference between the WCT2 output and the
repaired result of the WCT2 output of TE module as the texture
loss caused by TE module. When I(Wj) is the output of WCT2

of the structural layer of j channel in Fig. 2, Sj is the repaired
result of the WCT2. According to Eq. 16, we have the texture
loss in the structural layer repairing:

δ = I(Wj)− Sj

= I(Wj)−W(I(Wj))− I(Cj) +W(I(Cj))
≈ I(Wj)−W(Wj)− I(Cj) +W(Cj)
≈ Wj − T′(Wj)−W(Wj)− (Cj − T′(Cj)) +W(Cj)
≈ T(Wj)− T′(Wj)− T(Cj) + T′(Cj),

(19)
where δ is the texture loss in the structural layer repairing.

The formula above has 4 texture layer variables, which can
be simplified. Since Eq. 11 also contains the two variables w
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(a) Input (b) AWLS1-s (c) AWLS1-f (d) AWLS2-s (e) AWLS2-f (f) ILS-s (g) ILS-f
Fig. 11. Comparison of the three image filters. (a) Input. (b, c) Structure and texture layers produced by AWLS1 filter, respectively. (d, e) Structure and
texture layers produced by AWLS2 filter, respectively. (f, g) Structure and texture layers produced by ILS filter, respectively.

(a) C (b) WCT2 (c) ILS (d) ILS + ECSL (e)S (f) ILS (g) ILS + ECSL

Fig. 12. Ablation study for ECSL module. (a) Content image. (b)-(d) Extracted texture maps by WCT2, ILS, and ILS+ECSL, respectively. (e) Reference
style image. (f, g) Style transfer results produced by our method without and with the ECSL module, respectively.

and c, we convert the structural layers in Eq. 11 into texture
layers. Hence, we take W(W ) = W − T(W ) into Eq. 11 to
get

W ′ = W(W ) + T(C) = W − T(W ) + T(C). (20)

To get a result closer to the Eq. 19, we extract the AWLS
texture from W ′

j . According to Eq. 20 we get:

T(W ′
j) = T(Wj − T(Wj) + T(Cj))

≈ T(Wj)− T(T(Wj)) + T(T(Cj)).
(21)

We represent the texture loss δ with the weighted sum of
K1 × T(W ′

j) and K ′
1 × T(Cj) approximately. We regard the

difference between δ and the weighted sum as the difference
between the unnatural boundary texture and the natural bound-
ary texture. Hence, we have the final texture layer of j channel
Tj with another T(Cj) in Fig. 6.

Tj = K1 × T(W ′
j) +K ′

1 × T′(Cj), (22)

where K1 and K ′
1 are the weights of T(W ′

j) and T(Cj), re-
spectively. Fig. 12 shows the comparison of texture extraction
and style transfer using the ILS filter and the ECSL module.

The brightness information from the AWLS filter is stored
in both the structure layer and the texture layer. Combining
the color transfer of the structural layer with AWLS filter and
ILS filter can affect the significance of brightness information
preservation. With the AWLS filter parameters unchanged,
we can flexibly adjust the brightness effect of the final style
transfer result by modifying the weights of AWLS and ILS
texture in Eq. 22. However, the details in the ILS texture are

limited, as shown in Fig. 12 (c) and (f). According to the
experimental experience, the weight of the ILS texture layer
should not be set too high. It should be generally no more
than 0.4. The AWLS texture layer weight should not be less
than 0.6. Fig. 13 illustrates the results of image style transfer
under various parameters.

We note that both α in Eq. 4 and K1, K ′
1 in Eq. 22 influence

the brightness of the image style transfer result. However, if
α is set to considerably high, it may lead to blurring at the
boundaries of the final result. When α falls into a suitable
value range in Eq. 4, increasing K ′

1 over 0.5 in Eq. 22 does not
damage the image quality. However, it will affect the overall
brightness of the final result.

E. Mergence of structure and texture layers

We achieve the photorealistic image style transfer result of
j channel Oj (j ∈ {R,G,B} channel) by merging Sj and
Tj .

Oj = γ1Sj + γ2Tj , (23)

where γ1 and γ2 are the weights of Sj and Tj . We replace
Tj in Eq. 23 with Eq. 22 to obtain Oj as follows.

Oj = γ1Sj + γ2(K1 × T(W ′
j) +K ′

1 × T′(Cj)) (24)

In Eq. 12, when we use AWLS filter to smooth W ′
j , we get

T(W ′
j) = k1W

′
j − k′1W(W ′

j). Hence, we obtain

Oj = γ1Sj + γ2[K1(k1W
′
j − k′1W(W ′

j)) +K ′
1T′(Cj)]

= γ1Sj + γ2K1(k1W
′

j − k′1W(W ′
j)) + γ2K

′
1T(Cj)

= γ1Sj + γ2K1k1W
′
j − γ2K1k

′
1W(W ′

j) + γ2K
′
1T′(Cj).

(25)
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(a) S (b) C (c) K1 =0.4, K′
1 =0.6 (d) K1 =0.3, K′

1 =0.7 (e) K1 =0.1, K′
1 =0.9

Fig. 13. Style transfer results with varying parameter K1 and K′
1 in Eq. 22. (a) and (b) Reference style image, content image, and their masks (at the lower

right corner). (c)-(e) Style transfer results with varying K1 and K′
1. We obtain better luminance information with larger K′

1 (see the nose and forehead). The
weights K1 and K′

1 are shown under the images.

(a) C (b) S (c) γ1 =0.4, −k′
1 =-0.4 (d) γ1 =0.7, −k′

1 =-0.7 (e) γ1 =0.9, −k′
1 =-0.9

Fig. 14. Influence of weights of the original color and the transferred color. γ1 and −k′1 are shown under each result. (a) Content image and reference style
image. (c)-(d) Style transfer results with varying γ1 and −k′1.

Using Eq. 11 (TE module) to repair the image, we obtain a
normal new image. Although we fine-tune the weights of some
structural layers and texture layers in subsequent operations,
to ensure that the final result is a normal image, the weights
of the three variables corresponding to Eq. 12 should be the
same in the final expression. Hence, according to Eq. 11, the
sum of the weights of the structural layers is 0, and the sum
of the others’ weights is 1. Hence, we have

γ1 − γ2K1k
′
1 = 0,

γ2K1k1 + γ2K
′
1 = 1,

(26)

where we typically set γ1 = k′1, γ2 = K1 = 1, and
k1 = 0.8,K ′

1 = 0.2. γ1 controls the weight of maintaining the
reference style, and k′1 is the weight of subtracting the style of
C. The higher the parameters γ1 and k′1, the more prominent
the transferred reference style is in the final style transfer
result, and the more completely the original style of C will
be removed. We can adjust γ1 and k′1 to achieve the different
results shown in Fig. 14. We experimentally set γ1 = k′1 = 1.
We combine all Oj (j ∈ {R,G,G}) in Eq. 11 to obtain the
final style transfer result O.

F. Implementation details

The computer configuration used in this paper is as follows:
processor: Intel CoreTM i7-6800 k, CPU @ 3.40 GHz x 12,
memory (RAM): 64.0 GB, system type: a 64-bit operating
system, graphics card: GeForce GTX 1080/PCie/SSE2, and
operating system: Ubuntu 18.04 LTS. The ILS filter is written
in MATLAB2022B, and the rest of the code is written in
Python 3.9.

This research focus on improving the video transfer out-
comes rather than fast processing. Therefore, WLS has been
implemented as using CPU. To compare computational time
with WCT2 which is running on GPU, we will need to first
develop a GPU version of our WLS filter. For transferring

images with 500 × 500 pixels, the computing time of our
model is about 30 seconds. More than 95% of the calculation
time is spent on WLS filtering. This time is mainly consumed
by the CPU rather than GPU. In the future, we will work on
the GPU version and parallel processing of WLS filtering, and
try to perform real-time filtering.

IV. EXPERIMENTS

A. Comparison with state-of-the-art methods

1) Compared methods: Our approach allows for both with
and without masks, (as in Fig. 15 and Fig. 16). For face
images, we usually combine masks to achieve more accurate
results of photorealistic face image style transfer. We select
four state-of-the-art photorealistic image style transfer meth-
ods: Luan et al. [6], Yoo et al. [8], Li et al. [9], and Ding
et al. [12] for style transfer comparison of face and scene-
level images with masks. Fig. 15 shows the results. We also
compare our method with seven state-of-the-art photorealistic
image style transfer methods: Yoo et al. [8], Li et al. [9], An et
al. [10], Hong et al. [11], An et al. [19], Ding et al. [12], and
Wen et al. [15], for photorealistic image style transfer without
masks. For the method of Hong et al. [11], we produce the
photorealistic image style transfer results by running their code
1.

2) Visual comparison: In Fig. 15 and Fig. 16, the method
of Yoo et al. [8] shows limitations in effectively handling
object boundaries of the images. Results of [6], [9], [10],
[11], [19], and [15] have visible distortion in some local areas.
[9] does not perform style transfer well for face image. The
approach described in [11] fails to yield satisfactory results
for photorealistic images, as it primarily emphasizes artistic
effect in the image style transfer work. Because the texture
layer extracted by the AWLS filter has some original color of

1https://github.com/Kibeom-Hong/Domain-Aware-Style-Transfer
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(a) C,S (b) Luan et al. [6] (c) Yoo et al. [8] (d) Li et al. [9] (e) Ding et al. [12] (f) Ours

Fig. 15. Comparison with masks. (a) C (top), S (bottom), and their masks (on the upper right corner). (b)-(f) Style transfer results of Luan et al. [6], Yoo et
al. [8], Li et al. [9], Ding et al. [12], and ours, respectively.

(a) (c)Yoo [8] (d) Li [9] (e) An [10] (f) Hong [11] (g) An [19] (h) Ding [12] (b) Wen [15] (i) Ours

Fig. 16. Comparison results without masks. (a) C (top) and S (bottom). (b)-(i) Style transfer results of Yoo et al. [8], Li et al. [9], An et al. [10], Hong et
al. [11], An et al. [19], Ding et al. [12], Wen et al. [15], and ours, respectively.

C, although method of [12] has robust texture retention ability,
the results of the method of [12] show incompletely style
transfer effect. On the contrary, our method produces improved
photorealistic image style transfer results, which are closer to
the reference colors, and have good texture preservation effect.

3) Quantitative evaluation: We use the natural image qual-
ity evaluator (NIQE) and average gradient (AG) to quanti-
tatively evaluate the results. NIQE is a blind image quality
analyzer. This evaluation depends on quantifiable deviations
from statistical laws found in natural images. It does not
train on human-rated distorted images, and is not exposed to
distorted images. AG or ”acutance gradient” is related to the
sharpness of an image, including the difference of fine details
and the change of texture, as well as the overall sharpness
of the image. Lower NIQE and higher AG values indicate
better results. We report the results in Table I and Table II
corresponding to Fig. 15 and Fig. 16, respectively. We also
use SSIM and PSNR as quantitative indicators of compara-
tive analysis. Higher SSIM and PSNR values indicate better
results. In addition, we measure the style similarity between
stylized and style images using Gram distance (GD) for the
test dataset at the code published by Luan [6]. We report the
results in Table III, Table V and Table IV, respectively. In
Table I, our AG values are higher than those of other methods.

Results of Li et al. [9] have the lowest NIQE values. However,
our method surpasses [9] in terms of the significance of style
transfer and texture preservation. In Table III, for the face
images, our SSIM and PSNR values are higher than those of
other methods. For the flower images, our SSIM value is lower
than that of Ding et al. [12], and our PSNR value is lower
than that of Li et al. [9]. However, our method surpasses their
methods in terms of the significance of style transfer. In Table
II, for the glass image, AG value of Li et al. [9] and NIQE
value of An et al. [10] are better than ours. However, the style
transfer results of [9] and [10] have noticeable texture loss.
For the mountain image, NIQE value of An et al. [10] is best.
However, our result has more significance of style transfer.
In Table V, for the glass image, our SSIM and PSNR values
are the best. For the mountain image, SSIM value of Wen et
al. [15] is the best, and PSNR value of Li et al. [9] is better
than ours. However, our result has more significance of style
transfer.

B. User study

These four quantitative comparison methods may not be
suitable for evaluating image style transfer approaches because
they do not consider the significance of image style transfer.
When the style transfer effect is better, the style transfer
results may cause more substantial changes to the original
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(a) C,S (b) Yao [3] (c) Yu [41] (d) Svoboda [42] (e) Deng [43] (f) Ours
Fig. 17. Comparison results with artistic style methods. (a) C (top) and S, (bottom). (b)-(f) Style transfer results of Yao et al. [3], Yu et al. [41], Svoboda et
al. [42], Deng et al. [43], and ours.

TABLE I
COMPARISONS ON NIQE AND AG METRICS. THESE EVALUATIONS

CORRESPOND TO THE FIRST ROW AND THE SECOND ROW IN FIG. 15,
RESPECTIVELY.

[6] [8] [9] [12] Ours
NIQE 7.50 5.75 5.58 5.70 5.69
AG 1.54 2.32 2.14 2.00 2.43
NIQE 3.34 3. 51 2.68 3.38 3.10
AG 3.50 4. 01 3.50 4.18 4.45

TABLE II
COMPARISONS ON NIQE AND AG METRICS. THESE EVALUATIONS

CORRESPOND TO THE FIRST ROW AND THE SECOND ROW IN FIG. 16,
RESPECTIVELY.

[8] [9] [10] [11] [19] [12] [15] Ours
NIQE 8.20 5.39 5.94 7.13 7.09 6.51 7.94 5.36
AG 1.62 1.81 4.06 1.81 3.37 3.87 1.52 3.85
NIQE 5.30 4.99 3.16 4.97 6.76 4.45 4.52 4.18
AG 3.26 4.46 6.71 4.29 3.02 6.70 3.35 6.72

content image. The chances sometimes lead to the fact that
the evaluations are not fair. Consequently, we have introduced
a user study to provide a more comprehensive comparison of
various style transfer methods.

We conducted a user study involving 80 volunteers selected
randomly to verify the effectiveness of these proposed meth-
ods. For each volunteer, we presented 50 sets of style transfer
outcomes when using both our approach and other compared
approaches, including those cited as follows: [6], [9], [8], [10],
[11], [19], [12], and [15]. We carry out a survey to gather
feedback on the following inquiries. (i) Clarity of details and
distinct contrast. (ii) Natural and vivid color. (iii) Preservation
of textures, and (iv) maintenance of photorealism. For fairness,
the results generated by the eight methods are labelled as A1,
A2, A3, A4, A5, A6, A7 and A8, respectively, while our result
is labelled A9. The results are displayed in Table VI.

We express the total number of votes of Ai′ on the j′-
th question as Vi′j′ , and evaluate each approach for an
independent question in the following way. We calculate
the percentage of votes PoV as PoV =

󰀓
Vi′j′

8000

󰀔
× 100%,

where Vi′j′ can be achieved by Ai′ on the j′-th question.

TABLE III
COMPARISONS ON SSIM AND PSNR METRICS. THESE EVALUATIONS

CORRESPOND TO FIG. 15.

[6] [8] [9] [12] Ours
SSIM 0.57 0.56 0.55 0.62 0.63
PSNR 55.29 55.25 55.10 55.42 55.43
GD 0.91 1.12 0.93 0.95 0.96
SSIM 0.77 0.89 0.88 0.94 0.91
PSNR 64.38 65.87 66.34 65.11 66.08
GD 0.86 0.79 0.81 1.02 0.83

TABLE IV
COMPARISONS ON SSIM, PSNS AND GD METRICS. THESE EVALUATIONS

CORRESPOND TO THE DATASET [6].

[6] [8] [9] [12] Ours
SSIM 0.63 0.73 0.71 0.75 0.76
PSNR 57.81 58.95 57.72 59.93 61.59
GD 0.82 0.86 0.85 0.81 0.76

To provide an overall evaluation of different methods, we
further calculate the percentage of votes obtained by Ai′ on
PoV = (

󰁓4
j′=1 Vi′j′)/32000 ∗ 100%. In Table VI, we give

the percentage of votes obtained by different methods, where
Qu.x′ denotes the x′-th question. Table VI shows that our
method achieves the best results. These inquiries indicate that
human subjects prefer our results.

C. Comparison with other methods

1) Artistic style comparison: We compare our model with
four recent state-of-the-art artistic style transfer methods in-
cluding [3], [41], [42] and [43]. Results are presented in
Fig. 17, which shows that the four competitive methods are
more suitable for artistic style transfer than photorealistic style
transfer.

2) comparison with makeup transfer methods: Makeup
transfer methods [27], [30] do not work well for image pairs (C
and R) without dense correspondence. The outputs of Zhang
et al. [28] heavily depend on the training dataset. When the
content face image is very different from the reference style
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(a) S (b) C (c) Zhang et al. [28] (d) Ding et al. [12] (e) Ours

Fig. 18. Comparison of local makeup. We transfer the mouth color in S to C for visual comparison.

TABLE V
COMPARISONS ON SSIM AND PSNR METRICS. THESE EVALUATIONS

CORRESPOND TO FIG. 16, RESPECTIVELY.

[8] [9] [10] [11] [19] [12] [15] Ours
SSIM 0.11 0.12 0.09 0.06 0.07 0.13 0.08 0.14
PSNR 51.60 52.03 51.90 51.36 51.26 51.81 51.29 51.91
GD 0.20 0.21 0.14 0.15 0.76 0.82 0.13 0.09
SSIM 0.80 0.75 0.70 0.72 0.61 0.78 0.82 0.80
PSNR 69.22 69.85 69.26 69.24 67.91 68.98 69.23 69.31
GD 0.99 0.95 0.94 0.95 0.96 0.99 0.96 0.93

TABLE VI
VOTING RESULTS FOR OUR APPROACH AND THE COMPARISON

APPROACHES.

Methods Qu.1 Qu.2 Qu.3 Qu.4 Overall
Luan [6] 5.43% 5.78 % 3.68% 4.78% 4.91%
Yoo [8] 6.58% 5.78 % 6.08% 6.43% 6.21%
Li [9] 9.03% 8.90 % 10.05% 9.03% 9.25%

An [10] 7.03% 7.48 % 7.35% 6.83% 7.17%
Hong [11] 4.38% 5.73% 4.18% 4.73% 4.75%

An [19] 12.03% 12.30 % 13.13% 12.95% 12.60%
Ding [12] 12.98% 12.83% 18.38% 15.05% 14.81%
Wen [15] 5.90% 3.40 % 4.30% 2.73% 4.08%

Ours 36.68% 37.83% 32.88% 37.53% 36.23%

Note: Qu. denotes question.

image in posture, the results are not convincing. The result of
Ding et al. [12] has color overflow near the mouth, and our
result has the best visual effect. Some results are shown in
Fig. 18.

3) Comparison with sharpening post-processing: Our
model has a good texture preservation ability. When we
sharpen the style transfer results of state-of-the-art methods
on iPhone, our result is still clearer than theirs. Fig. 19 shows
the comparison results.

D. Discussion

1) Comparison with the LAB channel: Similar to method
of [12], our method also chooses RGB channel separated
technology instead of LAB channel separated technology. For
our photorealistic image style transfer task, we expect to get
more powerful and delicate controlling ability. Compared to
LAB or HSV, RGB has three basic components to jointly
determine color type, while other color spaces would use
only one or two components to determine color type. In a

more explicit manner of using three network branches to
respectively establish R, G and B correspondence between S

and C would increase the correctness and the delicacy of style
transfer result. We put the correctness of style transfer as the
first importance. With regard to other factors like color purity
and color brightness, we believe the network could deal with
them in an implicit way.

Consequently, we opt to utilize the R, G, and B channels
instead of the L, A, and B channels. In order to visually
compare the results, please refer to Fig. 20. Our approach
can generate more natural style transfer results in RGB color
space than it does in LAB color space.

2) Comparisons with Ding et al. [12]:
A. Channel separation for the whole images (channel separa-
tion only at the structural layers in [12]). In this paper, we
perform color transfer in the structural layer from ILS filter
channel-by channel. We also compensate for the texture loss
caused by TE module channel-by-channel in the textural layer.
B. Feature compensation (no loss compensation in [12]). The
method used AWLS filter to smooth the input image. In the
AWLS structure layer, [12] still used the AWLS filter to
enhance the color transfer results of WCT2. This operation
does not result in texture loss. In this paper, we use the ILS
filter to smooth the input image, and then use the AWLS filter
to repair the boundary of WCT2 results. The texture layer
obtained by the AWLS filter contains less texture details than
that obtained by the ILS filter. When we use the AWLS texture
layer to enhance the ILS texture layer, there will be less texture
after repairing.
C. The position of AWLS and ILS (only one filter used in
[12]). In this paper, the position of the AWLS filter and the
ILS filter cannot be interchanged. The function of the ILS filter
is different from that of the AWLS filter. For example, if C

is filtered by the AWLS filter at the beginning, some original
style of the input image will be remained in the texture layer
at the beginning, resulting in incomplete image style transfer.
AWLS filter in this paper is mainly used to repair the boundary
problem of WCT2, while the ILS filter does not have the
function of image enhancement.

3) Limitations: Our method also has two limitations. First,
the texture preservation of our model depends on the texture
layers extracted by both the WLS filter and the ILS filter.
When an image is too dark, the values of brightness and texture
of the image tend to the extreme value, which makes the gra-
dient solution ineffective. The invalid gradient solution results
in the lack of useful information in texture layer, and it leads
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(a) S (b) C (c) An et al. [19] (d) [19] + Sh (e) Ours

Fig. 19. Comparison with sharpening post-processing. Sh indicates the use of the sharpening post-processing on iPhone 12.

(a) S (b) C (c) In RGB (d) In LAB

Fig. 20. Comparison of photorealistic image style transfer in different
color spaces. Our method with RGB color space is able to produce more
photorealistic image style transfer result with less visual artifacts than does it
with LAB color space. We can see that the facial region of the result in (d)
seems to be polluted by the style from the hair in (a).

to the lack of clarity in our result, as shown in the first row
of Fig. 21. Second, in the absence of masks in style transfer,
the selection of style transfer regions becomes arbitrary. If
we conduct style transfer for face images without masks, our
method fails to produce satisfactory results with noticeable
artifacts. We show the two failure cases, as presented in the
second row in Fig. 21.

(a) S (b) C (c) Result

(d) C, MC (e) S, MS (f) With M (f) Without M

Fig. 21. Instances of failure. The first row: scene-level images; the second
row: face images. M denotes the masks of C and S.

V. CONCLUSION AND FUTURE WORK

This paper has introduced a novel framework towards high-
quality photorealistic image style transfer. We introduced an
adaptive image smoothing method for both content and ref-
erence style images, RGB channel separation module, texture
enhancing module, estimation and compensation of the struc-
tural layer texture loss module, and image merging module.
By combining the ILS filter and the AWLS filter, the proposed

method has proved its excellent ability in extracting complex
image textures and reducing color overflow in photorealistic
image style transfer results. We have evaluated various scene-
level images and face images to demonstrate the superior per-
formance of our approach compared with the most advanced
approaches. In the future, we plan to expand our approach
to photorealistic video style transfer. Furthermore, in order to
enhance the stability and vividness of the style transfer results,
we intend to add illumination editing methods [44]–[46] to our
approach.
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