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Abstract—Monocular object 6D pose estimation is a funda-
mental yet challenging task in computer vision. Recently, deep
learning has been proven to be capable of predicting remarkable
results in this task. Existing works often adopt a two-stage
pipeline with establishing 2D-3D correspondences and utilizing
a PnP/RANSAC or differentiable PnP algorithm to recover
6 degrees-of-freedom (6DoF) pose parameters. However, most
of them hardly consider the geometric features in 3D space,
and ignore the topological cues when performing differentiable
PnP algorithms. To this end, we present an improved end-to-
end monocular 6D pose estimation method (DGECN++) that
incorporates depth estimation and a geometric-aware learnable
PnP network. Our method is based on keypoints. First we
detect the 2D keypoints that correspond to the 3D model. We
then integrate differentiable PnP/RANSAC algorithm to create
an end-to-end pipeline for 6D pose estimation. We focuses on
the following three key aspects: 1) We utilize the estimated
depth information to guide the process of extracting 2D-3D
correspondences and refine the results using a cascaded dif-
ferentiable PnP/RANSAC algorithm that incorporates geometric
information. 2) We leverage the uncertainty of the estimated
depth map to enhance the accuracy and robustness of the
predicted 6D pose. 3) We propose a differentiable Perspective-
n-Point (PnP) algorithm based on edge convolution and self-
attention to explore the topological relationships between 2D-
3D correspondences. Experimental results demonstrate that our
proposed network surpasses existing methods in terms of both
effectiveness and efficiency.

Index Terms—6D pose estimation, graph CNN, end-to-end
network, attention mechanism.

I. INTRODUCTION

OBJECT pose estimation is an important task in computer
vision. It involves estimating the 6 degrees of freedom

(6DoF or 6D) parameters for the location and orientation of
an object in an image or a series of video frames. It has
wide applications in AR [1]–[4], robotic vision [5]–[7] and
3D reconstruction [8], [9]. In additional, [7] leverages the air-
craft’s inherent rigid structural characteristics and incorporates
arrow-like directional properties to construct a 3D skeleton
model for aircraft that possesses reconstruction capabilities,
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Fig. 1. Pipeline of our DGECN++. Given an RGB image as input, our
DGECN++ performs simultaneous segmentation and depth map prediction.
Once the 2D-3D correspondences are established, we replace the traditional
RANSAC/PnP algorithm with a learnable DG-PnP module to accurately
regress the 6D pose.

simplicity, and directional attributes. Due to the influence of
various factors, including noises, occlusion, and illumination
variations, accurate 6D pose estimation is still challenging.
6D pose estimation can rely on RGB image [1], [2], [5], [6],
[10], [11] or RGB image accompanying a depth image [12]–
[15]. The regression-based estimation and the keypoints-based
estimation are two major strategies for 6D pose estimation.
Traditional regression-based methods mainly used the template
matching technique [16]–[18]. CNN networks have shown
significant robustness to environmental variations. Some meth-
ods [1], [19], [20] introduced the CNN network to directly
regress the 6D pose parameters from a single RGB image.
[15] employ data augmentation techniques to enhance the
practical applicability of network in real-world scenarios. By
exclusively training on synthetic data, this approach reduces
the need for labor-intensive manual data annotation efforts.
The keypoints-based methods usually consist of two stages.
The first stage predicts the 2D locations of the the 3D model
keypoints in RGB images. Then, the second stage predicts
the 6D pose parameters by the Random Sample Consensus
(RANSAC) based Perspective-n-Point (PnP) method from the
2D-3D correspondences.

Although many representative works [21]–[25] have proven
the validity of the two-stage pipeline, there are still some
limitations on it. Firstly, RANSAC-based PnP is very time-cost
when the 2D-3D correspondences are dense. Secondly, most
two-stage neural networks do not optimize the loss functions
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Fig. 2. Overview of our DGECN++ architecture. Our framework comprises three main components: 1) a feature extraction network that combines depth
and RGB features, 2) a deep voting-based network for extracting 2D-3D correspondences, and 3) a learnable PnP network called DG-PnP++ for estimating
the 6D pose of objects. Here Fr , Fd, and Ffused represent RGB features, depth features, and local features, respectively.

directly for the ultimate 6D estimation. Thus they are not
trained in an end-to-end manner. Finally, the separation of the
two stages may accumulate significant errors and decrease the
ultimate estimation effect.

To overcome the above limitations, we propose a Depth-
Guided Edge Convolutional Network via attention mecha-
nism (DGECN++) to jointly tackle 2D-3D correspondence
extraction and 6D pose estimation. In DGECN++ network,
we design a depth-guided approach to leverage the geometric
constraints of rigid objects to effectively establish 2D-3D
correspondences, and a novel Dynamic Graph PnP (DG-
PnP++) to evaluate the properties of the correspondence set
and discover its potential for dealing with complex textures.

A preliminary version of this work (DGECN) has been
published in CVPR 2022 [26]. In this paper, we have made
several significant improvements to enhance the performance
of our original method. Firstly, we have incorporated a more
effective fusion module that combines depth and texture fea-
tures, leading to a notable improvement in accuracy. Secondly,
we have introduced several important modifications to the
DGECN framework to enhance the robustness of the learning
process. Specifically, we have extended the DG-PnP module
into an attention-based Dynamic Graph Edge Convolutional
network, which greatly reduces the influence of noise points.
Additionally, we have introduced a novel self-attention guide-
line to handle depth estimation in uncertain areas, further
strengthening the robustness of our approach. Through ex-
tensive experiments, we demonstrate that these contributions
significantly enhance the capability of extracting geometric
features from monocular images compared to the original
DGECN. Based on the fundamental architecture of DGECN
and further improvements made in this work, the whole work
becomes a new method, so we call it as DGECN++.

The contributions are reformulated as follows:
• We introduce a depth-guided network that enables direct

learning of the 6D pose from a monocular image, without
needing extra information. Additionally, we propose a
Depth Refinement Network (DRN) to enhance the quality
of the estimated depth map.

• We investigate the characteristics of 2D-3D correspon-
dence sets and unveil that constructing a graph from the
distributions of 2D keypoints assists in the learning of 6D

pose parameters. Additionally, we introduce a simple but
effective learnable PnP network for directly predicting the
6D pose from 2D-3D correspondences.

• We integrate attention mechanism into the 6D pose esti-
mation where the depth feature and pose parameters can
be jointly optimized with the depth map, uncertainty map
and 2D-3D matching.

Particularly, we have not only significantly improved
our baseline in on common benchmark datasets includ-
ing LINEMOD, YCB-Video and Occluded LINEMOD, but
also added the new evaluation for HomebrewedDB. Our
DGECN++ is able to produce more reliable results under
challenging scenes, i.e. Occluded LINEMOD and YCB-Video,
which have many symmetric objects and significant occlusion.
Moreover, our method can be directly applied to RGB-D
based 6D pose estimation works just through replacing depth
estimation module to the corresponding depth maps.

II. RELATED WORK

A. RGB based 6D Pose Estimation

As deep learning shows strong ability in object detection,
recognition and other fields, many CNN 6D pose estimation
based methods have emerged. These methods can be roughly
divided into two classes, direct methods and correspondence-
based methods. Direct methods usually directly estimate the
6D pose in a single shot. Kendall.et al. [20] first introduced
CNN into this field, where they employed a network based
on GoogleNet [27] to directly learn the 6D camera pose. This
problem is still challenging due to the variety of objects as well
as the complexity of a scene caused by clutters and occlusions
between objects. To address this issue, PoseCNN [1] estimated
the 3D translation of an object by localizing its center in the
image and predicting its distance from the camera. However,
this problem is still difficult due to the non-closed property
to addition of rotation matrix. Some works [19], [28] utilized
the SO(3)orSE(3) to make the rotation space differentiable.
Instead, correspondence-based methods find correspondence
between image plane and 3D space and recover 6D poses
by RANSAC-based Perspective-n-Point(PnP). PVNet [2] and
Seg-Driven [10] conducted segmentation coupled with voting
for each correspondence to make the estimation more robust.
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Fig. 3. Depth Refinement Network. This module consists of two separate depth estimation networks that produce depth maps DA and DB respectively. We
calculate the disparity between these depth maps and identify regions where the disparity exceeds a predefined threshold as uncertain areas. To address the
uncertainty in these regions, we employ a cross-attention mechanism and generate depth features.(⊗,⊖) are matrix multiplication and subtraction, respectively.

EPOS [21] made use of surface fragments to account for
ambiguities in pose estimation. Pix2Pose [6] used a network
based on GAN to predict the 3D coordinates of each object
pixel without textured models. Oberwegeret al. [29] output
pixel-wise heatmaps of keypoints to address the issue of
occlusion. NVR-Net [11] introduced a novel pose represen-
tation that effectively disentangles rotations from translations,
enabling robust pose prediction through a Convolutional Neu-
ral Network (CNN). Additionally, it incorporates viewpoint
rectification techniques to mitigate ambiguity in pose estima-
tion. TexPose [30] introduced a surfel-conditioned adversarial
training loss and incorporated a synthetic texture regularization
term. These components were designed to effectively address
pose errors and mitigate segmentation imperfections during
the texture learning process.

B. RGB-D based 6D Pose Estimation

Recently, consumer-level RGB-D cameras have shown ad-
vancements in autonomous driving, AR/VR, and 3D recon-
struction by providing additional depth information. Many
approaches are now attempting to leverage this distance in-
formation to enhance performance in challenging scenarios,
including poor lighting conditions, heavy occlusion, and weak
texture scenes.

Deep learning-based approaches have been exploring its
potential in this field, by incorporating depth information as
an additional input. For example, MCN [31] and DenseFu-
sion [14] combine 3D point and 2D information into a color-
depth feature, enabling the learning of 6D pose from this
latent space. PVN3D [12] extends PVNet [2] to include 3D
keypoints and leverage depth information to exploit geometric
constraints of rigid objects. PR-GCN [32] enhances depth
representation using a point refinement module to estimate
6D pose. In contrast to the aforementioned methods, our
approach is based on RGB images, where we learn depth
values to extract geometric features without relying on real
depth labels. HFF6D [15] introduces an innovative Subtraction
Feature Fusion (SFF) module, which incorporates an attention
mechanism to exploit feature subtraction during fusion. This
module explicitly emphasizes the feature distinctions between
consecutive frames, thereby enhancing the reliability of rel-
ative pose estimation in complex and challenging scenarios.
Hai et al. [33] computed a pose-induced flow based on the

displacement of 2D reprojection between the initial pose and
the currently estimated pose, which embeds the target’s 3D
shape implicitly.

C. Correspondence Learning in 6D Pose Estimation

To address the limitations of surrogate correspondence
learning, researchers have proposed end-to-end approaches
that enable gradient backpropagation from pose estima-
tion to intermediate representations. One such approach
is the dense correspondence network proposed by Brach-
mann and Rother [34], which incorporates learnable 3D
points, BPnP [35] for predicting 2D keypoint locations, and
BlindPnP [36] for learning the weight matrix associated
with unordered 2D/3D point sets. It is important to note
that these methods require surrogate regularization loss to
ensure convergence, as the optimal pose estimation involves
numerical instability and non-differentiable operations. Within
the probabilistic framework, these methods can be seen as a
Laplace approximation approach.

In addition to point correspondence, the RePOSE [37]
method introduces a feature-metric correspondence network
trained by backpropagating the PnP solver, such as Levenberg-
Marquardt. While this approach serves as a local regularization
technique in our framework, it is insufficient in addressing
pose ambiguity. EPro-PnP [38] introduced a probabilistic PnP
layer for pose estimation, which produces a distribution of
poses with differentiable probability density on the SE(3)
manifold. The intermediate variables in this layer, including
the 2D-3D coordinates and their corresponding weights, are
learned by minimizing the KL divergence between the pre-
dicted and target pose distributions.

Overall, these end-to-end approaches provide valuable in-
sights and advancements in handling surrogate correspondence
learning, enabling gradient-based optimization and enhancing
pose estimation in various applications.

D. Graph Convolution Network (GCN)

Owing to the higher representation power enabled by
graph structures, Graph Convolutional Networks (GCN) have
shown remarkable performance in various tasks such as image
captioning [39], text-to-image generation, and human pose
estimation [40]. In the field of 3D computer vision, Wald et
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al [41]. introduced a pioneering learning method that generated
a semantic scene graph from a 3D point cloud. DGCNN [42]
utilized a GCN-based network for extracting features from
point clouds. Another notable work is Superglue [43], which
employed GCN to match two sets of local features by simul-
taneously searching for correspondences and filtering out non-
matchable points. GCNs typically perform message passing or
information propagation between nodes. At each layer, a node
aggregates information from its neighbors, and this aggregated
information is then used to update the node’s representation.
Different from traditional GCNs, we construct a local graph
from a set of 2D corresponding points using the K-nearest
neighbors (K-NN) algorithm. Then, we perform custom edge
convolution operations on the local graph to regress poses.

III. METHODOLOGY

In this section, we present our depth-guided 6D pose
regression network, which aims to estimate the 6D pose from
monocular images. The overview of our method is illustrated
in Figure 2. Traditional keypoint localization adopts a voting-
based architecture that does not fully leverage depth informa-
tion. To address this limitation, we focus on three directions
to enhance this strategy:

1) We exploit the uncertainty of the estimated depth map
in scenes involving 6D object estimation. By refining the
depth map, we mitigate the impact of noise during the
depth estimation process.

2) Before directly inputting RGB images into the CNN for
establishing 2D-3D correspondences, we first predict the
depth map and introduce a Bidirectional K-NN Feature
Aggregation (BKFA) block to fuse features across differ-
ent domains.

3) We introduce a learnable DG-PnP++ module to replace
the conventional RANSAC/PnP in the two-stage 6D pose
estimation pipeline.

We begin with providing the necessary background infor-
mation. Subsequently, we describe our network architecture,
which incorporates depth information to enhance the accuracy
of 6D pose estimation.

A. Problem Formulation

Given an image I , our objective is to detect objects and
estimate their 6D pose. Specifically, we aim to estimate the
rotation R ∈ SO(3) and translation t = (tx, ty, tz) ∈ R3 that
transform the object from its object world coordinate system
to the camera world coordinate system.

Figure 2 provides an overview of our proposed method.
We start by learning depth information using an unsupervised
depth estimation network. Similar to the methods GDR-
Net [44] and PVNet [2], we locate each object in the image
using the FCN method [45] for segmentation. Based on the
segmentation results, we crop the region of interest from the
depth map and RGB image. These cropped regions are then
fed into the Bidirectional K-NN based Feature Aggregation
(BKFA) module to extract local features. Simultaneously, we
employ ResNet50 [46] to extract 2D features from the image.
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Fig. 4. 2D-3D correspondences. (a) Each semantic grid cell predicts the
2D keypoints’ locations corresponding to the object to which it pertains. (b)
Ground truth 2D correspondences (shown in red) along with their correspond-
ing hypotheses (shown in blue). (c) Projections of 2D correspondences onto
the camera plane. The camera and object coordinate systems are represented
by O and W , respectively.

To incorporate appearance features, geometry information,
and local features, we utilize a dense fusion module. This
module performs fusion and combines these different types
of features. Subsequently, the fused feature is fed into a 2D-
3D correspondences prediction network to establish the 2D-
3D correspondences. Finally, we utilize our proposed differ-
entiable DG-PnP to directly regress the associated 6D object
pose from the established 2D-3D correspondences.

Our framework is a keypoint-based method. Given an image
I and a set of 3D models M = {Mi|i = 1, ..., N}, our task is
to estimate the unknown rigid transformation {R, t}. For ease
of presentation, we assume there is a single target object in the
image, which we denote as O. As illustrated in Figure 4, our
goal is to predict the potential 2D locations in I corresponding
to the 3D keypoints of the model M . Subsequently, we aim to
recover the 6D pose parameters from these correspondences
using a network.

B. Depth-Guided Edge Convolutional Network

Inspired by recent works [12], [14], [47], [48] that utilize
RGB-D data and point clouds, we incorporate depth infor-
mation to enhance the robustness and accuracy of 2D-3D
correspondences. However, these methods typically require
LIDAR or other sensors to obtain precise depth information.
In addition, obtaining accurate depth information from a
pre-captured RGB image is often challenging. To address
this, we employ a network to predict depth as an additional
feature to guide the estimation of 2D-3D correspondences.
With the advancements in monocular depth estimation, several
methods [49]–[51] have emerged. However, these methods
are primarily designed for estimating depth in large-scale
scenes and may not be directly suitable for estimating depth
maps in the context of 6D pose estimation. Therefore, in
our approach, We start by pretraining two depth estimation
networks, determining the uncertain regions by comparing the
errors of the two generated depth maps. We then utilize a
self-attention mechanism to optimize the estimated depth map
within these uncertain regions.

As illustrated in Fig 5, the DRN consists of two distinct
depth estimation networks, which generate depth maps DA
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Fig. 5. Detail of the self-attention feature enhance layer.

and DB respectively. We then compute the difference between
these depth maps and identify regions where the difference
exceeds a certain threshold as uncertain areas. We address the
uncertainty in certain areas using a cross-attention mechanism,
where we consider the Depth as the query and the Uncertainty
Map (UM) as the key and value in the multi-head cross-
attention module. The computation of the attention map can
be represented as follows:

A(m) = Norm(Φ1(Depth)ΦT
2 (UM)), (1)

where A(m) denotes the attention map in the m-th head. The
function Norm represents the normalization function, and Φ()
corresponds to the MLP. The multi-head cross-attention can
then be expressed as:

D = [A(1)Φ3(Depth); ...;A(m)Φ3(Depth)]W. (2)

In the above equation, D represents the result of the multi-head
cross-attention, and W is a learnable parameter. Consequently,
D can be utilized to generate the depth feature Fd by adding
it to Φ3(Depth):

Fd = Φ3(Depth) +D. (3)

1) Feature extraction: This stage consists of two streams:
one for depth feature extraction and the other for color
feature extraction. Previous works [1], [2], [10], [14] have
addressed multiple object segmentation by employing existing
detection or semantic segmentation algorithms. Similarly, we
adopt FCN [45] for segmenting the input image. We use
ResNet50 for color embedding and regarding 3D feature
extraction, DGECN [26] introduce KFA module for more suf-
ficient RGB-D fusion,. By incorporating both local and global
information from appearance and geometry features, we can
achieve improved feature representations. To accomplish this,
we introduce the Bidirectional KFA module as an extension
of the KFA module. Let pi represent a pixel in the RGB
image, and Di = {dj |j = 1...k} denote the depth set of
the k-nearest neighbors of pi. We utilize a nonlinear function
Fpi

= f(Di, θi) with a learnable parameter θi to aggregate
the local feature of pi. Similarly, by replacing pi with di,
we obtain Fdi

= f(Pi, θi). Next, we concatenate the depth-
to-pixel feature Fpi with the pixel-to-depth feature Fdi and
employ a MLP to obtain the local fused feature:

Ffused = MLP (Fpi ⊕ Fdi), (4)

where ⊕ represents the concatenation operation. As de-
picted in Figure 2, the resulting feature is denoted as F =
(Fr, Fd, Ffused).

EdgeConv
𝑝𝑝𝑗𝑗

𝑝𝑝𝑖𝑖

Fig. 6. Local graph and edge convolution.

2) 2D keypoint localization: The 3D keypoints are chosen
from the 3D object model, similar to methods proposed in [2],
[12]. While some methods [5], [10] select the eight corners
of the 3D bounding box, these points are virtual and may
result in 2D correspondences outside the image. This can
lead to significant errors, especially for objects near the image
boundary. To address this, we select keypoints on the actual
object surface. Following the approach in [2], we employ the
farthest point sampling (FPS) algorithm to choose keypoints
on the object surface. Subsequently, we employ a network
based on [10] for detecting 2D correspondences.

3) Learning 6D pose from 2D-3D correspondences:
As illustrated in Figure 4, we are given a set of n 3D
keypoints K = {Ki|i = 1, ..., n}, where each Ki corresponds
to a set of 2D locations k = {kij |j = 1, ...,m} in the
image. Our objective is to design a network that can learn
the rigid transformation (R, t) from the established 2D-3D
correspondences. Previous approaches such as DSAC [52],
Single-Stage [53], and GDR-Net [44] have addressed this
problem using different techniques. However, they either rely
on sparse correspondences or dense correspondence maps.

To overcome these limitations, we propose a network based
on Graph Convolutional Networks (GCNs) to directly regress
the 6D pose from the 2D-3D correspondences. The network,
denoted as M, is described by the following equation:

(R, t) = M(K, k|Θ), (5)

where Θ represents the parameters of the proposed DG-PnP
module.

By reevaluating the characteristics of 2D-3D correspon-
dences, we observe that the structure of these correspondences
resembles that of a graph. As depicted in Figure 4, instead
of treating individual points as inputs, we consider the 2D
correspondence cluster as a graph and input it into our DG-
PnP module.

4) Self-attention Feature Enhance Layer: In our exper-
iments, we observed that each point in the 2D cluster con-
tributes differently to the overall results. To address this, we
employ a self-attention mechanism to enhance the features.
The self-attention mechanism is suitable for point cloud-like
data structures due to its permutation-invariant nature. The
detailed structure of our self-attention feature enhancement is
illustrated in Figure 5.

Let f ∈ RN×d be the input to the self-attention feature en-
hancement layer, where fi and fj represent the features of the
i-th and j-th points in the 2D correspondences, respectively.
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Fig. 7. The architecture of our DG-PnP++. The DG-PnP++ model takes a set of 2D correspondences points n = {m1,m2, ...,m8} as input. For each 2D
correspondence cluster mi, an EdgeConv layer calculates an edge feature set of size k and aggregates features within each set to compute EdgeConv responses
for the corresponding points. Subsequently, a Self-attention enhance (SAE) layer is applied to enhance features by fusing their global feature information. The
output features from the last EdgeConv layer are then globally aggregated to form a 1D global descriptor, which is used to regress the 6D pose parameters.

We begin by encoding the position of the i-th point using a
Positional Encoder (PE). Then, both fi and fj pass through
a Multi-Layer Perceptron (MLP), and the resulting output is
denoted as gi:

gi = PE(i) + FC(MLP (fi)) · FCT (MLP (fj)), (6)

where FC represents a fully connected layer. Next, we utilize
self-attention to obtain gi, which is then combined with fj
using self-attention. Finally, we apply an aggregation operation
to obtain f ′

i :

f ′
i = Norm(g) · FCT (MLP (fj)). (7)

5) Local Graph Construction: As shown in Figure 6, we
define P = {pi|i = 1...m} as a cluster of 2D correspondences.
To construct the local graph G = (P, E), we employ a k-
nearest neighbor (k-NN) approach. Here, P represents the
vertices, and E = pi ↔ pj represents the edges. Subsequently,
we compute edge features by aggregating the neighborhoods
of pi within P .

6) Edge-convolution: Different from a graph convolutional
network (GCN), our edge convolution is a variant of a CNN.
Given a 2D correspondence cluster with m pixels and X-
dimensional features denoted as f = {fi|i = 1, ...,m}, we
compute the local graph feature using our graph operation:

f ′
i =

m∑
j=1

λjgθi(fi, fj), (8)

where λj is a hyperparameter determined by the distance
between ki and kj . gθ represents a non-linear function with
learnable parameters θ. We adopt an asymmetric edge function
proposed in [42]:

gθi(fi, fj) = RELU(αi · (fi − fj) + βi · fi), (9)

where θi = (αi, βi) and Θ = {θi|i = 1, ...,m} in Eq. 5.
In our approach, we consider the 3D coordinates and RGB
information of ki as features fi, and the 3D coordinates can
be obtained by transforming the depth using camera intrinsic
parameters. Hence, in our network, X = 6.

C. Loss Function and Pose Estimation

To train our network, We employ four distinct loss func-
tions: Ld, Ls, Lk, and Lp. The collective loss function is
defined as follows:

L = λ1Ld + λ2Ls + λ3Lk + λ4Lp, (10)

where λ1, λ2, λ3, and λ4 are the weight coefficients.
Ld represents the depth loss, Referring to [54], [55], the

photometric reconstruction loss function Lph is defined as:

Lph(It, It′→t) =
α

2
(1− SSIM(It, It′→t))

+(1− α) ∥It − It′→t∥1 ,

Here, α = 0.85 and SSIM() represents the structural
similarity measured computed over a 3×3 pixel window [56].
The re-projected image It′→t is defined as:

It′→t = It′⟨proj(Dt,T t→t′ ,K)⟩,

Where ⟨.⟩ denotes the sampling operator, T t→t′ represents
the camera relative pose, and the camera intrinsic parameter
matrix K ∈ R3×3 is identical for all images. The proj()
function calculates the 2D coordinates of the projected depths
Dt in image It′ as follows:

proj(Dt,T t→t′ ,K) = KT t→t′Dt(pt)K
−1pt,

Where pt represents a pixel coordinate. To encourage neigh-
boring pixels to have similar depths, an edge-aware depth
smoothness loss Lds, weighted by image gradients, is em-
ployed to improve predictions around object boundaries:

Lds = |∂xDmn
t |e−|∂xIt| + |∂yDmn

t |e−|∂yIt|,

Here, ∂x and ∂y are gradient operations on the x-axis and
y-axis, respectively. Dmn

t = Dt/Dt represents the mean-
normalized inverse depth. The final loss is computed as the
weighted sum of the image photometric reconstruction loss
Lp and the smoothness loss Ls:
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Ld = Lph + µLds,

where µ = 0.01 represents the weighting for the smoothness
term.

Ls is the segmentation loss, which is used to guide the
segmentation task and extract the target object from the image.
We adopt the Focal Loss as suggested in [57].

Lk is the keypoint matching loss, which ensures accurate
2D-3D correspondences. As depicted in Figure 4, our objective
is to predict the 2D keypoints in the image, and the loss
function is defined as:

Lk =
1

M

n∑
i=1

m∑
j=1

||kpij − kp∗i ||, (11)

where kp∗i represents the ground truth 2D keypoint location,
n is the number of 3D keypoints, m is the number of 2D
correspondences for kpi, and M = m×n is the total number
of 2D correspondences predicted by our network in the image.

Lp is the final pose estimation loss, which ensures ac-
curate estimation of the 6DoF pose parameters. Inspired by
PoseCNN [1] and DeepIM [58], we define Lp as:

Lp =
1

n

n∑
i=1

∥ (R∗pi + t∗)− (Rpi + t) ∥, (12)

where R∗ and t∗ are the estimated rotation matrix and
translation vector, while R and t are the ground-truth values.

Our network is a multi-task network that performs var-
ious calculations including depth map estimation, segmen-
tation mask generation, 3D-2D correspondences extraction,
and 6DoF pose parameter estimation, similar to the current
state-of-the-art methods. In a more general scenario where
multiple target objects are present in the image, our network
can estimate the poses of these objects simultaneously, as
demonstrated in the experimental section.

IV. EXPERIMENTS

In this section, we conduct a comprehensive set of exper-
iments to validate the effectiveness of DGECN++ on var-
ious widely-used benchmark datasets. To facilitate a direct
comparison with traditional PnP methods and learning-based
PnP approaches, we replicate several experiments following
the methodology outlined in [44], [53] using a synthetic
sphere dataset to verify the proposed DG-PnP. Furthermore,
we conduct an ablation study to analyze the impact and
effectiveness of each component in our proposed method.

A. Implementation Details

1) Network Architecture: We feed DGECN with a RGB
image and directly output 6D pose. After a cross-domain
feature fusion block, we leverage PVNet as backbone to
estimate 2D-3D correspondences from the multi-fusion feature
of size 256× 256. Finally, DG-PnP directly estimates the 6D
pose from the estimated 2D-3D correspondences. In Figure 7,
we illustrate the detailed network architecture of our proposed
DG-PnP++. It takes n = m1 + m2 + ... + m8 2D locations

as input, where n is the number of input points, mi is the
number of 2D correspondences in a cluster. The dimension of
output pose is 7, including quaternion and translation.

2) Training Strategy: Our network is trained end-to-end
using Ranger optimizer on a single GTX3090 GPU. We use a
batch size of 24 and a base learning rate of 1e-3 and divided by
10 after processing 50%, 75%, and 90% of the total number of
data samples. For 2D localization we utilize FCN on LMO and
FCOS on YCB-V. The detectors are trained using the identical
training samples employed for pose estimation. We employ an
SGD optimizer with specific settings, including a learning rate
of 0.001, a momentum value of 0.9, and a weight decay factor
of 10−4. We set λ1−4 = 1 in Equation 10.

B. Datasets

1) Synthetic Sphere Dataset: Similar to the approach used
in Single-Stage [53], we generate synthetic 2D-3D correspon-
dences using a virtual calibrated camera. The synthetic images
have a resolution of 640× 480, a focal length of 800, and the
principal point is located at the center of the image. However,
since our network utilizes color information and extracts local
features, including location and color, we introduce a gradient
background to the synthetic dataset. The remaining parameter
settings are consistent with those of Single-Stage, as depicted
in Figure 9.

2) YCB-V Dataset: This dataset, proposed by Calli et
al. [1], [63], consists of 21 YCB objects with diverse shapes
and textures. It includes 92 RGB-D videos, wherein a subset
of objects is captured and annotated with 6D pose and in-
stance semantic masks. The dataset presents challenges such
as varying lighting conditions, significant image noise, and
occlusions. Following the approach of PoseCNN [1], we divide
the dataset into 80 videos for training and select a set of 2,949
keyframes from the remaining 12 videos for testing purposes.

3) LM-O Dataset: The dataset used in this study [64] serves
as a widely accepted benchmark for object 6D pose estimation.
It consists of 13 videos featuring 13 low-textured objects,
along with annotations for 6D pose and instance masks. LM-
O presents several challenges, including scenes with high
complexity, texture-less objects, and variations in lighting
conditions. To address these challenges, we adopt similar
approaches as previous works and augment our training set
with synthesized images, following the methodology presented
in PoseCNN [1].

4) HomebrewedDB Dataset: This dataset, called Home-
brewedDB, was recently introduced for evaluating 6D pose es-
timation [65]. In our study, we specifically utilize the sequence
that includes three objects shared with LINEMOD [66]. This
choice allows us to showcase the capability of estimating the
poses of identical models in different environmental settings.

C. Evaluation metrics

For comparison, we evaluate our method with two common
metrics: the average distance (ADD) [1] and the 2D reprojec-
tion error (REP) [10].

The Average Distance of Distances (ADD) metric cal-
culates the average distance between the 3D model points



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

TABLE I
ABLATION STUDY. RESULTS FOR DIFFERENT VERSIONS OF OUR MODEL WITH COMPARISON TO SOME BASELINE MODELS. WE EVALUATE THE IMPACT
OF THE DGECN, AND DG-PNP. (S) DENOTES SYMMETRIC OBJECTS, WE REPORT THE AVERAGE RECALL (%) OF ADD(-S) ON LM-O DATASET. THE

OVERALL BEST RESULTS ARE PRESENTED IN BOLD, WHILE THE SECOND BEST RESULTS ARE UNDERLINED.

2D-3D extractor PnP type Ape Can Cat Driller Duck Eggboxs Glues Holepun Mean

DGECN++(Ours)

DG-PnP++(Ours) 56.1 80.3 30.5 78.3 55.2 62.3 70.6 68.6 62.5
DG-PnP 54.3 75.9 22.4 77.5 51.2 57.8 66.9 63.2 58.7

PointNet-like PnP 44.4 71.3 18.5 71.6 48.6 51.3 59.1 60.3 53.1
Patch-PnP 51.2 74.6 21.6 73.4 48.5 56.9 65.1 61.4 56.6

RANSAC-based PnP 41.3 66.5 14.3 65.4 44.1 48.9 55.4 56.2 49.0
BPnP 46.2 73.3 19.5 72.4 46.2 52.1 61.4 56.2 53.4

PVNet

DG-PnP++(Ours) 26.3 71.2 24.6 73.2 28.5 58.1 51.6 48.5 47.8
DG-PnP 23.4 68.9 23.2 72.2 27.8 55.1 53.2 47.2 46.4

PointNet-like 19.2 65.1 18.9 69.0 25.3 52.0 51.4 45.6 43.3
Patch-PnP 14.4 55.3 14.9 68.2 22.1 45.9 49.4 41.3 38.9

RANSAC-based PnP 15.8 63.3 16.7 65.7 25.2 50.3 49.6 36.1 40.8
BPnP 21.4 45.3 12.7 64.3 21.4 42.1 44.5 38.7 36.3

SegDriven

DG-PnP++(Ours) 19.9 53.2 16.6 58.2 21.8 32.6 49.3 42.1 36.7
DG-PnP 17.5 51.4 15.9 57.9 20.6 31.8 43.2 39.6 34.7

PointNet-like 14.8 45.5 12.1 54.6 18.3 30.2 45.8 37.4 32.3
Patch-PnP 9.8 36.9 14.6 57.3 11.6 28.3 42.3 32.4 28.4

RANSAC-based PnP 12.1 39.9 8.2 45.2 17.2 22.1 35.8 36.0 27.0
BPnP 15.6 47.8 14.5 51.3 14.8 30.5 26.4 32.1 29.1

GDR-Net

DG-PnP++(Ours) 40.5 81.2 28.8 73.1 50.3 58.3 51.5 56.9 55.1
DG-PnP 37.5 78.5 26.8 70.6 42.9 56.8 50.4 56.4 52.5

PointNet-like PnP 17.9 65.3 18.6 62.8 31.5 48.6 36.7 49.2 41.3
Patch-PnP 39.3 79.2 23.5 71.3 44.4 58.2 49.3 58.7 53.0

RANSAC-based PnP 20.9 67.5 23.9 66.1 34.9 53.4 42.3 54.3 45.4
BPnP 35.5 74.2 21.5 67.4 36.9 51.4 45.8 51.1 48.0

TABLE II
QUANTITATIVE COMPARISON ON KNOWN CATEGORIES OF LM-O DATASET WITH STATE-OF-THE-ART RGB METHODS WITH THE METRIC AS ADD(-S),

(R) STANDS FOR REFINEMENT. ALL METHODS TRAINED WITH real + syn DATA. P.E. MEANS WHETHER THE METHOD IS TRAINED WITH 1 POSE
ESTIMATOR FOR THE WHOLE DATASET OR 1 PER OBJECT (N OBJECTS IN TOTAL).

Method PoseCNN PVNet Single-Stage HybridPose GDR-Net SO-Pose DeepIMR DPODR DGECN DGECN++(Ours)
P.E. 1 N N N 1 1 1 1 N 1 N
Ape 9.6 15.8 19.2 20.9 41.3 46.3 59.2 - 50.3 50.1 52.1
Can 45.2 63.3 65.1 75.3 71.1 81.1 63.5 - 75.9 73.8 76.3
Cat 0.9 16.7 18.9 24.9 23.5 18.2 26.2 - 26.4 25.4 27.5

Driller 41.4 65.7 69.0 70.2 54.6 71.3 55.6 - 77.5 77.6 78.3
Duck 19.6 25.2 25.3 27.9 41.7 43.9 52.4 - 54.2 55.5 55.2

Eggboxs 22.0 50.2 52.0 52.4 40.2 46.6 63.0 - 57.8 59.1 62.3
Glues 38.5 49.6 51.4 53.8 59.5 63.3 71.7 - 66.9 64.1 66.6

Holepun 22.1 36.1 45.6 54.2 52.6 62.9 52.5 - 60.2 58.3 60.6
Mean 24.9 40.8 43.3 47.5 47.4 54.3 55.5 47.3 58.7 58.0 59.9

TABLE III
EVALUATION WITH STATE-OF-THE-ART RGB METHODS ON YCB-V. REF.

STANDS FOR REFINEMENT. P.E. MEANS WHETHER THE METHOD IS
TRAINED WITH 1 POSE ESTIMATOR FOR THE WHOLE DATASET OR 1 PER

OBJECT (N OBJECTS IN TOTAL).

Method Ref. P.E. ADD(-S) REP-5px AUC of ADD-S
PoseCNN 1 21.3 3.7 75.9
GDR-Net N 60.1 - 91.6
SO-Pose N 56.8 - 90.9
PVNet N - 47.4 73.4

SegDriven 1 39.0 30.8 -
Single-Stage N 53.9 48.7 -

DeepIM ✓ 1 - - 88.1
CosyPose ✓ 1 - - 89.8
DGECN 1 60.6 50.3 90.9

Ours 1 67.1 60.5 92.5
N 69.5 63.2 93.1

transformed using the predicted pose and those obtained with
the ground truth pose. If the distance is less than 10% of
the model’s diameter, we consider the estimated pose to be
correct. For symmetric objects, we use the ADD(-S) metric,

TABLE IV
ABLATION ON DEPTH MAP.!DENOTES TEST WITH DEPTH MAP AND

%DENOTES TEST WITHOUT DEPTH MAP.

Corr. Extractor DG-PnP ADD AUC of ADD-S
! ! 58.7 90.9
! % 53.2 83.5
% ! 50.6 81.3
% % 41.3 75.3

which measures the deviation to the closest model point. Let’s
denote the predicted pose as [R∗, t∗] and the ground truth pose
as [R, t]. The ADD metric is calculated as:

ADD =
1

m

∑
x∈O

∥(Rx+ t)− (R∗x+ t∗)∥. (13)

The ADD-S metric is calculated as:

ADD− S =
1

m

∑
x1∈O

min
x2∈O

∥(Rx1 + t)− (R∗x2 + t∗)∥, (14)
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Fig. 8. Qualitative results on YCB-V dataset. Here we show visualizations of results on YCB-V dataset. Points on different meshes in the same scene are
in different colors which projected back to the image after being transformed by the predicted pose.

Fig. 9. Synthetic data. We generate synthetic data following the approach
described in [53], with the addition of incorporating backgrounds into the
scenes.

where x represents a vertex among a total of m vertices on
the object mesh O.

The Reprojection Error (REP) metric calculates the aver-
age distance between the projections of the 3D model points
based on the estimated pose and the ground truth pose. If the
REP value is below 5 pixels, we consider the estimated pose
to be accurate.

When evaluating on YCB-Video, we further compute the
AUC (area under curve) of ADD-S/ADD(-S) by varying the
distance threshold from 0cm to 10cm as in PoseCNN. Thereby,
ADD-S uses the symmetric metric for all objects, while ADD(-
S) only uses the symmetric metric for symmetric objects. For
Cropped LINEMOD, we report the average angle error follow-
ing PixelDA. For each metric, we use the symmetric version

Fig. 10. Comparison with PnP variants. We conducted comparisons
between our method and three existing approaches: EPnP [59], PointNet-like
PnP [53], and Patch-PnP [44]. Our method consistently outperforms PointNet-
like PnP in terms of accuracy. Furthermore, as the noise level increases, our
method exhibits superior accuracy and robustness compared to EPnP. The
pose error is evaluated using the ADD metric.

for symmetric objects, which we denote by a superscript (s).

D. Comparison with State-of-the-arts

We compare with the state-of-the-art works on YCB-V and
LM-O datasets. It is worth mentioning that we also make
a comparison with the RGB-D based methods to verify the
effectiveness of our depth estimation network.
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Fig. 11. Qualitative results on LM-O. Here, The colorful silhouettes represent the estimated 6D poses.

TABLE V
EVALUATION WITH STATE-OF-THE-ART RGB-D METHODS ON YCB-V. (*)

DENOTES REPLACING DEPTH ESTIMATION NETWORK WITH GROUND
TRUTH LABELS.

Method ADD(-S) REP-5px AUC of ADD-S
Implicit ICP [60] 64.7 - -
SSD-6D ICP [61] 79.0 - 91.6
PointFusion [62] - 73.7 73.4
DenseFusion [14] 86.2 30.8 -
PVN3D [12] 53.9 99.4 -
DGECN [26] 60.6 50.3 90.9
DGECN* 82.1 99.2 91.5
Ours 67.1 60.5 92.5
Ours* 85.3 99.8 95.5

1) Performance on HomebrewedDB: We compare our
method with DPOD, YOLO6D and SSD6D, along with the
refined version (SSD6D+Ref.), on three objects from the
HomebrewedDB dataset, which is also used in LINEMOD.
We strictly follow the experimental setup of HomebrewedDB,
where our models are trained on real LineMOD data and
evaluated on a new sequence in HomebrewedDB, which
includes three LineMOD objects: a benchvise, a drill, and
a phone. However, direct methods for solving 6D pose es-

timation implicitly learn the camera intrinsics, which hampers
their performance when faced with a new camera. In contrast,
approaches based on 2D-3D correspondences, such as PnP,
are more robust to camera changes as they can simply use
the new intrinsics for pose estimation. By employing contour-
based pose refinement and rendering with the new intrinsics,
SSD6D+Ref. enables easy adaptation and even outperforms
DPOD and other approaches for the Bvise object. As shown
in Table IX, among the methods compared, our approach
consistently outperforms others on both synthetic and real
data. Specifically, on the real dataset, we observe a significant
improvement of at least 12% compared to the performance
achieved by DPOD [67], and outperforms approaches like
DPOD and SSD6D+Ref. on the synthetic by at least 10% and
30%, respectively.

2) Performance on LM-O and LM dataset: Table II presents
a comparison of DGECN++ with state-of-the-art monocular
methods on the Occlusion LINEMOD dataset. Our DGECN++
achieves comparable performance to methods such as [44],
[58], [68], while outperforming [2], [53]. It is important to
mention that the Occlusion LINEMOD dataset poses addi-
tional challenges due to strong occlusions frequently occurring
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TABLE VI
EFFECT OF THE DESIGN ON DGECN++. EVALUATE ON LM DATASET.

Self-attetion Feature Enhance Depth Refinement Network K-NN Feature Aggregation ADD AUC of ADD-S
% % % 46.3 78.4
% ! % 47.6 81.2
% % ! 52.8 83.7
! % % 48.3 80.5
! ! % 53.8 85.5
! % ! 52.9 82.9
% ! ! 54.9 87.6
! ! ! 59.9 92.5

TABLE VII
DETAILED RESULTS ON YCB-V W.R.T. ADD(-S). (S) DENOTES SYMMETRIC OBJECTS. THE OVERALL BEST RESULTS ARE PRESENTED IN BOLD, WHILE

THE SECOND BEST RESULTS ARE UNDERLINED.

Method PoseCNN SegDriven Single-Stage GDR-Net DGECN DGECN++(Ours)

002 master chef can 3.6 33.0 - 41.5 45.3 50.6

003 cracker box 25.1 44.6 - 83.2 77.5 85.4

004 sugar box 40.3 75.6 - 91.5 94.8 97.3

005 tomato soup can 25.5 40.8 - 65.9 71.2 78.5

006 mustard bottle 61.9 70.6 - 90.2 89.9 93.6

007 tuna fish can 11.4 18.1 - 44.2 54.3 59.5

008 pudding box 14.5 12.2 - 2.8 16.7 22.6

009 gelatin box 12.1 59.4 - 61.7 62.2 69.7

010 potted meat can 18.9 33.3 - 64.9 65.8 71.6

011 banana 30.3 16.6 - 64.1 78.9 81.6

019 pitcher base 15.6 90.0 - 99.0 98.5 100

021 bleach cleanser 21.2 70.9 - 73.8 82.1 84.6

024 bowlS 12.1 30.5 - 37.7 23.5 40.3

025 mug 5.2 40.7 - 61.5 63.5 65.8

035 power drill 29.9 63.5 - 78.5 77.2 81.3

036 wood blockS 10.7 27.7 - 59.5 62.3 66.5

037 scissors 2.2 17.1 - 3.9 18.3 23.6

040 large marker 3.4 4.8 - 7.4 8.1 12.3

051 large clampS 28.5 25.6 - 69.8 55.6 66.6

052 extra large clampS 19.6 8.8 - 90.0 90.1 92.3

061 foam brickS 54.5 34.7 - 71.9 38.6 65.8

Average 21.3 39.0 53.9 60.1 60.6 67.1

on many objects. To ensure a fair evaluation, we compare
our methodology with state-of-the-art methods using syn-
thetic data exclusively within the BOP setup, see Table VIII.
Our baseline method, DGECN++, demonstrates a significant
performance advantage over all other methods. Notably, it
surpasses the current top-performing method, CosyPose, from
the BOP leader board, by a substantial margin. Specifically,
Ours achieves an impressive accuracy of 68.3%, surpassing
CosyPose’s 62.6% by 5.7%.

3) Performance on YCB-V: Table VII presents the evalua-
tion results for the YCB-V dataset, demonstrating the perfor-
mance of our model. Our model is comparable to state-of-the-
art methods such as [44], [69], and it even outperforms the
refinement-based method proposed in [58]. Figure IV show-
cases qualitative results on the YCB-V dataset. In general,

our observations align with those made for the other datasets.
Specifically, the incorporation of geometric information, either
from RGB or RGB-D, contributes to improved performance
compared to the associated baselines. Furthermore, Table V
displays a comparison with RGB-D based methods. Notably,
in certain scenes, our proposed method even surpasses RGB-D
based approaches without the availability of ground truth depth
maps. For the AUC of ADD(-S), our method achieves 67.1%,
while DenseFusion achieves 82.6%, and for the AUC of ADD-
S, our method achieves 91.9% compared to SSD6D+ICP’s
91.6%. Moreover, with the utilization of the attention mech-
anism and the utilization of real depth data in place of the
depth estimation module, our method surpasses all compared
RGB-D based methods in performance.
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TABLE VIII
COMPARISON WITH STATE-OF-THE-ART METHODS ON LMO AND YCB-V UNDER BOP METRICS. WE PROVIDE RESULTS FOR ARV SD , ARMSSD AND
ARMSPD ON LMO AND YCB-V. MEAN AR REPRESENTS THE OVERALL PERFORMANCE ON THESE TWO DATASETS AS THE AVERAGE OVER ALL AR

SCORES. THE OVERALL BEST RESULTS ARE PRESENTED IN BOLD, WHILE THE SECOND BEST RESULTS ARE UNDERLINED.

Method Ref.
LMO

Mean AR
YCB-V

Mean AR
ARV SD ARMSSD ARMSPD ARV SD ARMSSD ARMSPD

CosyPose ! 0.480 0.606 0.812 0.632 0.772 0.842 0.850 0.821

EPOS 0.389 0.501 0.750 0.547 0.626 0.677 0.783 0.695

PVNet 0.428 0.543 0.754 0.575 - - - -

CDPN 0.445 0.612 0.815 0.624 0.396 0.570 0.631 0.532

GDR-Net - - - - 0.584 0.674 0.726 0.661

SO-Pose 0.442 0.581 0.817 0.613 0.652 0.731 0.763 0.715

DGECN 0.458 0.593 0.816 0.622 0.663 0.726 0.775 0.721

DGECN++ 0.542 0.672 0.844 0.683 0.793 0.853 0.797 0.814

TABLE IX
POSE ESTIMATION RESULTS IN TERMS OF ADD 10%METRIC ON

HOMEBREWEDDB DATASET. THE BEST METHOD IS MARKED IN BOLD.

Method Supervision Object MeanBvise Drill Phone
Ours

Real GT
63.5 70.6 43.2 59.1

YOLO6D 15.3 6.5 0.1 7.3
DPOD 57.2 62.8 33.1 51.0
Ours

Synthetic
77.5 72.4 45.9 65.3

SSD6D+Ref. 59.4 25.1 29.3 37.9
DPOD 70.9 66.4 35.6 57.6

E. Ablation study

In this section, we aim to discuss the following research
questions:

1. How does DG-PnP++ compare to handcrafted PnP meth-
ods and other learnable PnP approaches?

2. Does the incorporation of learned depth information
enhance the accuracy of the final pose estimation?

3. Is DGECN++ backbone effective in combination with
various PnP variants?

By investigating these questions, we can gain insights into
the comparative performance of DG-PnP, the impact of learned
depth on pose estimation, and the effectiveness of DGECN in
conjunction with different PnP variations.

1) Comparison to PnP Variants: For the training phase,
we utilize a dataset comprising 20,000 synthetic images,
while 2,000 images are reserved for testing purposes. During
the training process, we introduce random 2D noise with
a variance σ ranging from 0 to 15 and incorporate out-
liers at rates of 10% and 30%. The comparison conducted
on synthetic data is of paramount importance as it allows
for a direct evaluation of DG-PnP against PnP variants,
while mitigating the influence of keypoint detection methods.
Figure 5 showcases the results obtained at different noise
levels, comparing DG-PnP with EPnP [59], PointNet-like
PnP [53], and Patch-PnP [44]. While handcrafted PnP methods
demonstrate higher accuracy under minimal noise conditions,
learnable PnP methods exhibit increased robustness to noise
and achieve superior accuracy as the noise level increases.
Notably, DG-PnP exhibits remarkable robustness and accuracy,

surpassing PointNet-like PnP and performing comparably to
Patch-PnP. This can be attributed to DG-PnP++ and Patch-PnP
considering both geometric and topological features, enabling
them to achieve superior performance.

2) Ablation on Depth Map and DRN: As mentioned earlier,
depth information plays a crucial role in 6D pose regression.
However, in our experiments, we trained our DGECN++
model without utilizing depth estimation. Since depth infor-
mation is utilized in both correspondence extraction and DG-
PnP++, we conducted an ablation study to examine its impact.
The results, shown in Table IV, clearly demonstrate that
DGECN++ achieves significantly improved robustness when
depth prediction is incorporated. Table VI further illustrates
the impact of the Depth Refinement Network (DRN). Notably,
when the depth refinement network is not utilized, there is a
significant decrease of 7.0 in the Average Distance Difference
(ADD) metric and a decrease of 9.6 in the Area Under Curve
(AUC) of the ADD-S metric.

3) Effect of the Design and Each Component in
DGECN++: Table I presents a comprehensive analysis of
the effectiveness of each component in our proposed method.
To evaluate the impact of different components, we combine
them with various state-of-the-art methods. For DGECN++,
we substitute the DG-PnP++ module in our architecture with
different PnP variants [26], [35], [44], [53]. The results demon-
strate that DGECN++ achieves competitive performance when
compared to different PnP methods. Notably, it even out-
performs the combination of Single-Pose with the PointNet-
like PnP. Regarding DG-PnP++, we replace the PnP variants
in certain two-stage methods with DG-PnP++. This analysis
provides insights into the contribution of DG-PnP++ within
these frameworks and its impact on overall performance.

We evaluate the effectiveness of each component in
DGECN++ as shown in Table VI. By selectively adding
and removing individual components, we can demonstrate the
efficacy of each component. In particular, the incorporation of
the self-attention mechanism in the original version noticeably
enhances the accuracy of 6D pose estimation.

By conducting these experiments and evaluations, we gain
a deeper understanding of the effectiveness and potential
advantages of each component in our proposed method.
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TABLE X
ABLATION STUDY UNDER BOP SETUP ON LMO AND YCBV DATASET.

Row Method LMO Mean AR YCB-V Mean AR FPS
ARV SD ARMSSD ARMSPD ARV SD ARMSSD ARMSPD

A0 DGECN++ 0.542 0.672 0.844 0.683 0.793 0.853 0.797 0.814 30
B0 A0: Sparse corr.→ Dense corr. 0.549 0.689 0.856 0.698 0.812 0.881 0.806 0.833 15
B1 B0: DG-PnP++→ DG-PnP 0.512 0.638 0.779 0.643 0.783 0.844 0.765 0.797 17
B2 B0: DG-PnP++→ CNN 0.432 0.511 0.669 0.537 0.619 0.721 0.512 0.617 10
C0 A0: → dynamic graph for feature extraction 0.553 0.678 0.841 0.691 0.790 0.885 0.812 0.829 28
C1 B0: → dynamic graph for feature extraction 0.551 0.703 0.832 0.695 0.775 0.872 0.818 0.816 14
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Fig. 12. Application. Real-time 3D registration of point clouds and meshes.

TABLE XI
RUNTIME ANALYSIS. WE PROVIDE RUN-TIME STATISTICS FOR THE KEY

STEPS IN OUR METHODOLOGY AND CONTRAST THEM WITH THE
BASELINE’S PERFORMANCE.

Method Dadaset DetectorDepth Pred.Feature FusionPose Reg.FPS
DGECN LM 10ms 7ms 2ms 3ms 40

Ours
LM 10ms 7ms 2ms 4ms 40

YCB-V(1 obj.) 10ms 7ms 2ms 4ms 40
YCB-V(8 obj.) 15ms 10ms 3ms 5ms 30

4) Ablation Study of Different Designs of Architecture:
We have conducted an ablation study on replacing sparse
correspondences with dense correspondence, and a dynamic
graph again for feature extraction in DG-PnP++. Table IX
shown that The utilization of dense correspondences connec-
tivity undeniably improves the accuracy of our method. Never-
theless, given our reliance on k-nearest neighbor (knn) search
for graph convolution, adopting dense connections would lead
to a substantial escalation in computational requirements,
rendering real-time performance unachievable. While graph
feature extraction can indeed trade less time loss for higher
accuracy.

5) Ablation Study of Different Detectors: On the Occluded
LINEMOD test set of the BOP dataset, we conducted an
experiment by switching the synthetically trained object de-
tector from FCN (with metrics: AP: 68.3, AP50: 91.5, AP75:
76.8, Speed: 32.4 ms/img) to the slightly less accurate but
significantly slower Faster R-CNN with a ResNet101 back-
bone (with metrics: AP: 66.9, AP50: 89.1, AP75: 74.8, Speed:
77.5 ms/img). Surprisingly, this change resulted in only a
marginal 1.4% drop in performance for DGECN++. As a
result, we continue to use FCN as the base detector in all
other experiments due to its superior accuracy and efficiency.

F. Runtime Analysis

All our experiments are implemented using PyTorch [70].
We test our method on a PC with an Intel E5-2630 CPU
and a GTX 3090 GPU. Given a 640 × 480 image, using
the FCN detector, our approach takes ≈ 32 ms for 8 objects,
which include ≈ 15 ms for detection, for ≈ 13 ms for depth
estimation and correspondence extraction and ≈ 5 ms for DG-
PnP to estimate 6D pose. Table XI provides an overview of
the computational times for each step of our method, with
particular emphasis on object detection and depth estimation,
which consume the majority of the processing time.

G. Applications

Our method is suitable for various applications since it is
real-time and effective.

Objects Grasp. Robotic grasping is a critical capability
that allows robots to interact with their surroundings by
manipulating and securely grasping objects. It serves as a
foundational skill for robots to perform a wide range of
tasks, including pick-and-place operations, assembly tasks, and
object manipulation.

The primary objective of robotic grasping is to enable a
robot to achieve secure and reliable grasps on objects with
varying shapes, sizes, and material properties. This entails the
robot perceiving the objects in its environment, devising suit-
able grasp strategies, and executing the grasps with precision
and control. While our method primarily focuses on grasping
rigid objects, its principles and techniques can be adapted for
other object types as well.

Virtual Reality. Three-dimensional registration technology
holds significant importance in the realm of virtual reality
(VR). It serves the purpose of accurately aligning and in-
tegrating virtual objects with the real world, facilitating a
seamless interaction between the virtual and real environments
to provide an immersive experience for users.

Traditional 3D registration methods typically rely on spe-
ciali zed equipment such as depth sensors (e.g. , RGB-D
cameras) or laser scanners to capture the geometric structure
and texture information of the real world. These sensors enable
the acquisition of object shapes, positions, and surface char-
acteristics within the environment. In contrast, our proposed
solution leverages a single consumer-grade color camera, as
illustrated in Figure 12, to achieve similar results.

V. CONCLUSION

In this work, we have introduced DGECN++, a novel end-
to-end depth-guided network designed to learn from RGB
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images without real depth annotations. The main idea behind
our approach is to leverage geometric and topological infor-
mation to jointly address 2D keypoint detection and 6D pose
estimation. We further explore the use of graph structures to
model the distribution of keypoints more effectively in the
context of 2D-3D correspondences. Additionally, we propose
a dynamic graph PnP approach to learn the 6D pose, which
replaces the traditional handcrafted PnP method. As a result,
our approach offers real-time performance, high accuracy, and
robustness for monocular 6D object pose estimation.

Additionally, we share common constraints with other
model-based pose estimation methods, necessitating the use
of CAD models to ensure precise 2D-3D correspondences.
As we look to future research directions, we strongly believe
that our reformulation has the potential to significantly impact
self-supervision pipelines, particularly for unseen objects, by
enabling joint optimization of both geometry and texture infor-
mation. Additionally, exploring the generalization capability
of our approach to novel object instances or categories would
provide valuable insights into its robustness and applicability
in real-world settings with diverse and evolving object classes.
We firmly believe that model-free pose estimation represents
a promising and pivotal direction for future advancements in
the field.
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