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Abstract Illumination harmonization is an important but
challenging task that aims to achieve illumination compati-
bility between the foreground and background under different
illumination conditions. Most current studies mainly focus on
achieving seamless integration between the appearance (illu-
mination or visual style) of the foreground object itself and
the background scene or producing the foreground shadow.
They rarely considered global illumination consistency (i.e.,
the illumination and shadow of the foreground object). In
our work, we introduce “Illuminator,” an image-based il-
lumination editing technique. This method aims to achieve
more realistic global illumination harmonization, ensuring
consistent illumination and plausible shadows in complex
indoor environments. The Illuminator contains a shadow
residual generation branch and an object illumination transfer
branch. The shadow residual generation branch introduced
a novel attention-aware graph convolutional mechanism to
achieve reasonable foreground shadow generation. The object
illumination transfer branch primarily transfers background
illumination to the foreground region. In addition, we con-
struct a real-world indoor illumination harmonization dataset
called RIH, which consists of various foreground objects
and background scenes captured under diverse illumination
conditions for training and evaluating our Illuminator. Our
comprehensive experiments, conducted on the RIH dataset
and a collection of real-world everyday life photos, validate
the effectiveness of our method.

Keywords indoor scene illumination harmonization, object
illumination editing, seamless integration, shadow residual
generation.

1 Introduction
Image Composition targets at producing a new composite
image by cutting a foreground object from one image and
pasting it on another background image. This is an important

problem in computer vision [1–6] and graphics [7–15]. How-
ever, because the foreground and background are typically
under different illumination conditions (e.g., illumination
intensity, direction, and color temperature), composite im-
ages inevitably suffer from inharmonious illumination. Thus,
illumination harmonization [16–19], which aims to achieve
illumination compatibility between the foreground and the
background, is a potential and challenging task.

Most previous traditional methods have been developed
to address this challenging task by transferring statistical
information between the foreground and background regions,
such as color [20–25] and texture [26]. However, these ap-
proaches only work for simple cases. Recently, numerous
deep learning-based methods [27–32] have been proposed
for solving the image illumination harmonization problem
from various perspectives, thereby producing more realistic
illumination harmonization results. However, all these meth-
ods only consider appearance consistency and disregard the
effects of latent shadows.

Liu et al. [33] and Yan et al. [30] mainly focused on the
shadow generation of foreground objects to achieve the image
composition task. However, they failed to ensure illumination
consistency between the foreground and background and only
targeted simple outdoor scenes with parallel illumination
casting. Although these methods [34–36] consider both the
global appearance and illumination consistency, they still
suffer from the following difficulties. Song et al. [36] lacked
control over the appearance preservation of the synthesized
object and had a limited shadow generation space. Bao et al.
[34] and Zhan et al. [35] primarily targeted simple outdoor
scenes and failed to effectively generalize them to complex
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Fig. 1 Our visual illumination harmonization results on real-world scenes under various illumination conditions. From left to right are
background scenes (a), foreground objects (b) captured under different illumination conditions from the corresponding background scenes,
naive composite input images (c), our generated illumination harmonization results (d) and corresponding ground truths (e), respectively.

indoor environments.
These shortcomings strongly motivate us to seek an effec-

tive deep learning-based solution to explore more complex
and challenging illumination harmonization tasks that con-
sider global appearance and illumination harmonization, as
shown in Figure 1. Deep learning-based techniques, particu-
larly our task, generally require adequate paired training data
consisting of composite images without global illumination
harmonization and corresponding target images with global
illumination harmonization.

However, existing image-based illumination harmonization
datasets such as the ccHarmony dataset [19], iHarmony4 [27],
shadow-AR dataset [33], HVIDIT dataset [29], and DESOBA
dataset [30] only consider foreground object appearance or
foreground object shadow, and rarely consider both. Although
the datasets [35], IH [34] and VIDIT [37] consider both
the appearance and shadow of a foreground object, they have
limitations that make them ineffective for our task. For a
synthetic dataset [35], limited foreground objects containing
only two types of objects and simple outdoor scenes with
parallel light projections severely limit their applications.
The IH [34] and VIDIT datasets [37] are both synthesized
using rendering software, which results in a considerable
gap between the synthesized images and real-world images,
and thus considerably limits the robustness of the algorithm.
Therefore, we are encouraged to construct a complex and
challenging real-world illumination harmonization dataset for
global appearance and illumination harmonization tasks.

In this work, we construct a large-scale, high-quality, real-
world illumination harmonization dataset named RIH in a
controllable indoor environment. We first pre-determine over
800 real indoor scenes as backgrounds, and 600 common
objects as foregrounds. Subsequently, as shown in Figure 5,

we separately capture each background scene and the cor-
responding ground-truth image under different illumination
conditions.

Based on background and ground truth images, a com-
posite image is generated using a foreground object mask
to cut the foreground object from one ground truth image
and paste it into another background scene. To obtain more
accurate foreground object masks, we employ professional
photo editors to manually annotate the foreground objects.
In addition, a light probe is used to record the illumination
information in the scenes. In general, using the above com-
posite method, our dataset finally contains 30000 seven-tuples
in total, each with one input triplet (i.e., a naive composite
image and the corresponding masks of the foreground object
and background object-shadow) and another ground truth
quadruplet (including foreground illumination, background
illumination, object illumination consistency ground truth
image, and global illumination harmonization ground truth
image). The image composition of our dataset is shown in
Figure 6.

With the paired training dataset, our goal is to achieve more
realistic illumination harmonization results for naı̈ve input
composite images, focusing on global illumination consis-
tency. Thus, inspired by the methods [29, 30], we propose
a novel illumination harmonization method, Illuminator, as
shown in Figure 2. It consists of a shadow residual generation
branch and an object illumination transfer branch to produce
global appearance and illumination harmonization.

In the shadow residual generation branch, due to the com-
plexity of indoor illumination scenes, particularly the irreg-
ular cast shadows of background objects, previous meth-
ods [30, 33, 34] failed to generate plausible shadows for
foreground objects by simply using background information
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cues. Thus, our key insight is to fully utilize the powerful
modeling ability of graph convolution networks and propose
a novel attention-aware graph convolutional mechanism to re-
alize the reasonable generation of foreground object shadows.
Specifically, we introduce a cross foreground-background
attention (CFBA) module to effectively model the relative
spatial interaction relationship between the foreground object
and background scene, guiding the shadow residual genera-
tion of the foreground object. In contrast to previous works
focusing only on shadow generation, our task considers both
shadow generation and illumination harmonization for fore-
ground objects. Therefore, the strategy of directly learning
the object shadow cannot accurately produce light-transport
effects (e.g., shadows), and we are encouraged to learn the
foreground object shadow residuals.

In the object illumination transfer branch, we focus on
achieving illumination seamless integration between the fore-
ground object region and the background scene. Illumination
accounts for shading effects [29, 38, 39] that are reflectance-
independent. Thus, we first use intrinsic image properties,
following the method in [29], to obtain foreground and
background shading information from the input image, rather
than physically based intrinsic images. Using the shading
information, a shading transfer module is introduced to guide
the foreground shading to be consistent with that of the back-
ground. In addition, we use a patch GAN [40] to push the
generator to produce realistic illumination harmonization
results. Our contributions are summarized as follows:
• We design a simple and effective illumination harmo-

nization data capturing method, and present a real-world
indoor dataset for global illumination harmonization
tasks.

• We propose a novel global illumination harmonization
framework, Illuminator, which redefines object illumina-
tion harmonization as a shading style consistency prob-
lem and introduces a novel cross foreground-background
attention-aware graph convolutional mechanism, effec-
tively achieving high-quality global illumination harmo-
nization results.

• We evaluate our method and the state-of-the-arts on our
RIH dataset and other real challenging images, and show
the superiority of our method both quantitatively and
qualitatively.

2 Related work
2.1 Image Harmonization

Image harmonization aims to achieve seamless illumination
compatibility between the foreground and background under

different illumination conditions. Previous image harmoniza-
tion works mainly included traditional and deep learning-
based methods. Specifically, traditional methods mainly focus
on producing consistent visual appearances employing low-
level statistics between the foreground and background, which
include color [21, 41, 42], gradient information [43–45], and
semantic information [25, 46]. However, they only match
the appearance of the foreground with the background parts,
while overlooking visual realism.

Recently, some deep-learning-based methods [47–49] have
made further contributions to image harmonization tasks.
Cong et al. [27, 50] regarded image harmonization as a
domain translation that transforms the foreground domain
into the background domain. Ling et al. [32] treated image
harmonization as a style transfer problem and proposed a
region-aware adaptive instance normalization module to ad-
dress it. Guo et al. [29, 51] proposed image harmonization
solutions using intrinsic image harmonization and transform-
ers. In particular, intrinsic image harmonization seeks to
achieve image harmonization via separable harmonization of
reflectance and illumination. Jiang et al. [31] and Wang et
al. [47] worked on the image harmonization problem from
the perspectives of self-supervision and semi-supervision. In
addition, Cong et al. [52] and Guerreiro et al. [48] began
with full-resolution image harmonization to explore image
harmonization tasks. Hang et al. [53] introduced contrastive
learning to achieve image harmonization. Liu et al. [49]
designed SwinIH, an image harmonization model based on
the Swin Transformer architecture, to obtain impressive image
harmonization results.

However, these methods mainly focus on achieving ap-
pearance and visual style consistency between the foreground
and background. In contrast, we provide a novel perspec-
tive on image-shading style consistency and achieve global
appearance and illumination harmonization.

2.2 Shadow Generation

The existing shadow generation methods can be divided into
two categories: rendering-based and image-to-image trans-
lation methods. Some rendering-based shadow generation
methods [54–56] require strong user interactions to obtain ex-
plicit illumination condition, reflectance, and scene geometry
to generate plausible shadows. Although these methods [57–
59] recover illumination information and scene geometry
from a single image, inaccurate estimation typically produces
unsatisfactory results. Worchel et al. [60] demonstrated
efficient generation of shadows in the differentiable rendering
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of triangular meshes. Sheng et al. [61] introduced an interac-
tive soft-shadow network (SSN) to generate controllable soft
shadows for image composition. However, the assumption that
the shadow receiver is only a ground plane limits its practical
application. Sheng et al. [62] proposed a system PixHt-Lab
for generating perceptually plausible light effects based on
pixel height representation, and a method SSG++ guided by
3D-aware buffer channels to improve the soft shadow quality
cast on general shadow receivers.

Image-to-image translation methods mainly focus on di-
rectly performing shadow-generation tasks in the 2D domain.
ShadowGAN [63] proposed a local conditional discriminator
and a global conditional discriminator to model the shape and
direction of the shadow, respectively, and directly produced
a plausible shadow for an inserted 3D foreground object.
However, this method does not consider the occluders of real
shadows. ARShadowGAN [33] is an attention mechanism
that exploits background cues to guide foreground object
shadow generation. Hong et al. [30] constructed an outdoor
shadow-generation dataset and proposed a shadow-generation
network SGRNet to generate shadows for foreground ob-
jects. However, they are suitable only for relatively simple
scenes with parallel-illumination casting. Considering that
our task targets both shadow generation and object illumina-
tion transfer, in contrast to the above methods, we introduce an
attention-aware graph convolutional mechanism to effectively
model the interaction relationship between the background
and foreground to guide the foreground object shadow residual
generation.

2.3 Graph Convolutional Networks

Graph Convolutional Network was first proposed in [64]
for a semisupervised classification task. Recently, GCNs
(GCNs) [65–69] have received considerable attention for
computer vision and graphics tasks. Chen et al. [70] pro-
posed a multilabel classification model based on a GCN to
model object label dependencies to improve the recognition
performance. Wan et al. [71] developed a HSI classification
method based on a GCN to correctly discover contextual rela-
tions among pixels. Lin et al. [72] used GCNs to reconstruct
detailed colors for mesh vertices to recover 3D facial shapes
with high-fidelity textures from single-view images. Li et
al. [68] proposed a GCN based mesh regression called Intag-
Hand to demonstrate the effectiveness of GCN in a two-hand
reconstruction task. Based on the above analysis, considering
the ability of the graph to describe complex data relationships,
particularly for our illumination harmonization task, we fully
model the relative spatial position relationship between the

foreground and background to effectively guide the shadow
generation of the foreground object. Thus, without loss of
generality, we leverage the powerful modeling capability of
a GCN to design an attention-aware graph convolutional
mechanism for illumination harmonization.

3 Proposed Method
Given a pair of naive composite image X̃ and the correspond-
ing real ground truth image X , with a foreground mask Mf

and a background object-shadow pair mask Mos, our goal is
to learn a harmonization network G, which inputs X̃ , Mf

and Mos, and outputs the global illumination harmonization
result as X̂ = G (X̃ , Mf , Mos) expected to be as harmonious
as X .

To this end, we design an Illuminator to separately achieve
foreground object shadow generation and illumination con-
sistency between the foreground and background for global
illumination harmonization. It primarily comprises two
branches: a shadow residual generation branch and an object-
illumination transfer branch, as shown in Figure 2. In the
shadow residual generation branch, the key task is to generate
a plausible foreground object shadow residual to achieve
the shadow generation of the foreground object. The object-
illumination transfer branch mainly focuses on producing
consistent shading between the foreground and background.
We also employ a generative adversarial network PatchGAN
to force the generator to produce more realistic illumination
harmonization results.

3.1 Generator

As shown in Figure 2, the generator mainly consists of two
branches. The first branch targets at generating harmonious
object illumination from a shading-style transfer perspective
based on intrinsic image properties [29]. The second branch
is the foreground object shadow residual generation module,
which uses a novel attention-aware graph convolutional mech-
anism to solve the object shadow generation problems. The
above two results, the final global illumination harmonization
result is obtained by subtracting the foreground object shadow
residual from the harmonious object illumination.
Object Illumination Transfer Architecture. In this work, we
redefine object illumination harmonization as a shading style
consistency problem. Thus, the key insight into shading style
transfer is to achieve a consistent shading style between the
foreground and background. Our object illumination transfer
model uses a naive composite image X̃ and the corresponding
foreground object mask Mf as input, and outputs a object
illumination harmonization image X̂a.
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Fig. 2 Our pipeline consists of a shadow residual S̃fo generation branch and a object illumination transfer branch. The shadow residual
generation branch takes the composite image X̃ and the corresponding background object-shadow mask Mos as input and outputs the
foreground object shadow residual S̃fo. The object illumination transfer branch takes the composite image X̃ and corresponding foreground
object mask Mf as input and outputs the object illumination harmonization result X̂a whose the foreground object illumination is consistent
with the background. Our method finally outputs the realistic global appearance and illumination harmonization result.

Fig. 3 The illumination consistency module. It mainly achieves
the consistent illumination between the foreground and background.

We primarily adopt the encoder-decoder parts of the re-
flectance and shading of IntrinsicNet [29] to design our model.
Specifically, for an input composite image and the correspond-
ing foreground object mask, we first use the two encoders E
to extract the shading and reflectance features, respectively.
Subsequently, as shown in Figure 3, foreground shading
and background shading were obtained by multiplying the
corresponding masks and the composite image shading, re-
spectively. Then, they are fed into the shading style transfer
module (SSTM) following the shading encoder, achieving
foreground shading style consistency with the background
shading style.

The shading-style transfer module consists of three iden-
tical background-foreground shading mapping mechanisms
(BFSM) in series. Each mechanism includes two branches: the
first introduces the RAIN mechanism of [32], which guides
the foreground object shading features to learn a style con-
sistent with the background shading features; the second is a
convolutional block consisting of three consecutive 3×3 con-

volution layers, which further extracts the composite image
shading features. Their output features are then concatenated
and fed into the next BFSM performing the above opera-
tion. After obtaining the output features of the shading-style
transfer module, they were fed into the shading decoder DI

to produce a harmonious shading map. Finally, we conduct
element-wise multiplication on the harmonious shading map
I and reflectance map R obtained by decoding the reflectance
features to achieve object illumination harmonization.
Object shadow residue generation architecture Our fore-
ground object shadow residual generation network uses the
composite image X̃ and the corresponding background object-
shadow pair mask Mos as inputs, generating the foreground
object shadow residual S̃fo directly. From the existing works,
it is clear that background object-shadow pairs implicitly con-
tain the illumination direction information [73] of the scene,
which can provide rich cues for guiding foreground object
shadow generation [30, 33, 34, 63]. However, they either
focused on outdoor scenes with parallel lighting or ignored
the occlusion problem of real shadows. Apparently, they fail
to generate a plausible object shadow in complex real-world
indoor scenes because the shadows cast by background ob-
jects have irregular directions and cannot effectively provide
clear guidance. Therefore, a more effective foreground object
shadow generation solution for indoor scenarios is required.
We design a novel attention-aware graph convolutional mech-
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anism that utilizes the cross foreground-background attention
(CFBA) module to effectively associate background cues with
the foreground object to learn the foreground object shadow
residuals.

As shown in Figure 2, our architecture consists of three
parts: a feature extraction module, a cross foreground-
background attention-aware graph convolutional module,
and a feature-decoding module. Specifically, we first adopt
a CNN-based backbone to extract the foreground features
FFo and the background features BFos. Furthermore, they
are connected separately to same GCN block with four con-
secutive graph convolutional layers through a fully connected
layer. We then construct the adjacency graph G as the input
to the GCN, which can be defined as follows:

G = {V,E,A} , (1)

where V represents the set of nodes composed of all features,
E is the set of edges, and A is the adjacency matrix describing
the graph structure used to define the interconnections between
all nodes. Specifically, for any two nodes Vi and Vj , if Vi is
the nearest neighbor of Vj and there is an edge between them,
the weight of the edge of the adjacency matrix is calculated
as follows:

Aij =

{
1, Vi ∈ Nk(Vj)
0, otherwise

,

where Nk(Vj) represents the K(K=10) nearest neighbor of
Vj . The graph convolution of each layer is defined as follows.

X(k+1) = σ
(
D̃− 1

2 ÂD̃− 1
2X(k)W (k)

)
, (2)

where σ denotes ReLU activation function for fast conver-
gence and the node representations X(k) and X(k+1) are the
input and output of the k-th layer, respectively. Â is the self-
connection adjacency matrix, that is, Â = A + In, used to
improve the stability of the model training, where In denotes
the unit matrix. W (k) is a trainable weight matrix and D̃ii

can be calculated as

D̃ii =
∑

j
Aij . (3)

Considering that background information can provide key
clues for the foreground, such as lighting information and
relative position relationships, it is particularly important to
effectively model the correlation between the background
and foreground. However, because of the complex geomet-
ric structure and spatial layout of indoor scenes as well as
the irregular casting of background object shadows, simply
representing the interaction [30, 33, 34, 63] between the
foreground and background cannot achieve satisfactory re-
sults. Thus, inspired by the methods [68, 74], we design a
cross foreground-background attention (CFBA) module, as

shown in Figure 2, to implicitly express the spatial correlation
between the foreground and the background.

We utilize the global features of the input image as global
auxiliary information (GAI) to further guide the generation
of foreground object shadows in a reasonable direction. First,
we concatenated the GAI with the foreground and back-
ground graph features, respectively. They are then fed into the
multi head self-attention module (MHSAM), obtaining the
corresponding query (QF /QB), key (KF /KB), and value
(VF /VB) features of the foreground and background, respec-
tively. We exchange K and V values of the foreground and
background, and combine the multi head attention mechanism
to achieve the cross foreground-background attention operator
for modeling the spatial correlation between the foreground
and background. Specifically, we input the QF value of the
foreground and the KB and VB values of the background,
as well as the QB value of the background and the KF and
VF values of the foreground into the multi head attention
mechanism as follows:

RF→B = Softmax(
(QB)(KF )

T

√
D

)VF , (4)

RB→F = Softmax(
(QF )(KB)

T

√
D

)VB , (5)

where D is a normalization constant and RF→B and RB→F

are the corresponding constructed correlation features be-
tween the foreground and background. Finally, we concatenate
RF→B and RB→F , and pass them through the feature decod-
ing module to obtain the foreground object shadow residual,
which is further supervised by LRshadow

.

LRshadow
= ∥(S̃fo − (X̂ −X))Mfos∥22, (6)

where Mfos is the shadow mask of the foreground object.

3.2 Discriminator

To ensure that the generated illumination harmonization
results is more realistic, it should be closer to a real ground-
truth image. We design the discriminator following Patch-
GAN [40], which concatenates the input image X̃ and fore-
ground object mask Mf as the input. Our discriminator
consists of four consecutive convolutions with valid padding,
instance normalization, and Leaky ReLU operations. Subse-
quently, a sigmoid function is used to activate the last feature
map produced by the convolution, and the activated feature
map is further passed through the global average pooling to
produce the final output.
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3.3 Training Losses and Details

Our illumination harmonization task includes two key com-
ponents: transforming the illumination information of fore-
ground objects and generating reasonable shadows for fore-
ground objects. Thus, our total loss Ltotal consists of five
sub-losses. The reconstruction loss Lrecons is used to recon-
struct the global appearance and illumination information
of the output image. The reflectance loss Lreflec is used to
constrain the appearance (content information) of the image
to remain unchanged, whereas the illumination loss Lillu

and shadow residual loss LRshadow
are used to ensure that

the illumination and shadow information of the generated
foreground object are closer to the target image. Furthermore,
an adversarial loss Ladv is further used to refine the generated
result. The total loss is expressed as follows:

Ltotal =β1Lrecons + β2Lreflec + β3Lillu

+ β4LRshadow
+ β5Ladv,

(7)

where β1, β2, β3, β4 and β5 are the hyperparameters control-
ling the influence of each term.

Reconstruction Loss. This is a classical L1 loss between
the output image X̂ and the corresponding real ground-truth
image X , which is expressed as

Lrecons = ∥X̂ −X∥1. (8)

Reflectance and Illumination Losses. Following [29], we
regard ∇R̂ ≈ ∇Xa as a constraint to harmonize reflectance
and reflectance loss:

Lreflec = E(▽R̂,▽Xa)
[∥ ▽ R̂−▽Xa∥1], (9)

where▽R̂ and▽Xa are the predicted reflectance gradient and
real object appearance illumination harmonization ground-
truth image gradient, respectively. E denotes the expectation.
The object illumination harmonization loss is defined as
follows [29]:

Lillu = E(I,Xa)[∥I −Xa∥2], (10)

where I denotes shading predicted by the generator.
Adversarial losses. Ladv is utilized to describe the com-

petition between the generator and the discriminator as:
Ladv = log(D(X̃,Mf , X)) + log(1−D(X̃,Mf , X̂)),

(11)

where D(·) is the probability that the image is “real”. X̃ is the
input image, Mf is the corresponding mask, X̂ is the output
of the generator of Illuminator, and X is the ground truth.
We set β1 = 60.0, β2 = 10.0, β3 = 1.0, β4 = 40, β5 = 1.0, and
adopt the Adam optimizer to optimize the entire network.

Our Illuminator is implemented using PyTorch and run
on the NVIDIA GeForce GTX 3090Ti GPU. We divide the

30000 seven-tuples of RIH dataset into two parts: 25000
for training, and 5000 for testing. There are no overlapping
background scenes or foreground objects between the test and
training sets. The Illuminator is trained for 100 epochs with
batch size of 1, and the resolution of all images is 512× 512.
The initial learning rate is 10−4, and the number of layers in
the GCN is set to 3.

4 Our RIH Dataset
Our dataset contains over 800 indoor scenes covering various
common daily life and office environments as backgrounds,
and 600 foreground objects with different shapes, types, and
materials as foregrounds for illumination editing. Each scene
with a foreground object was captured under various illumi-
nation conditions using several predetermined controllable
intelligent spotlights with different color temperatures. In
addition, to enrich the complexity and diversity of the cap-
tured backgrounds, we use various reference objects with
different materials and shapes to fill the background during
the capture process. In the following section, we introduce
our dataset in detail from two perspectives: image capture,
image composition and pairing.

4.1 Image Capture

To capture a real-world dataset for our illumination harmo-
nization task, we design a simple and effective data-capturing
method and build an intelligent photographic device that only
requires a set of simple photography and lighting equipment.
Specifically, our capture device consists of several intelligent
spotlights with different illumination intensities and color
temperature, additional disturbing light sources to enhance the
data, a light probe that records the illumination information
of scenes, a digital camera (Canon camera with 6D Mark II
and 4608× 3456 resolution), and the corresponding fixture,
that is, a magnetic circular light track. Figure 4 (a) and (b)
show the specific construction of the data acquisition device
and a live case, respectively.

We first fix the spotlights and camera on the light track
at equal intervals and the camera bracket, respectively. The
camera and spotlights were maintained at the same height
to form a closed loop. A captured scene is then built under
the closed loop, which is located in the field of view where
the beam of light intersects the field of view of the camera.
Additionally, a light probe was placed at the scene to record
the corresponding illumination information. To ensure the
quality of the captured image, the following three aspects
must be emphasized. (1) The pitch angle of the camera and
the direction of the spotlights can be adjusted appropriately
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Fig. 4 (a) and (b) are the data acquisition device and one live case, respectively. The data acquisition device (a) consists of light sources, a
digital camera (Canon camera with 6D Mark II and 4608 × 3456 resolution), and a magnetic circular light track.

according to the photography requirements. (2) We use a
remote-control switch and trigger to control spotlight state
(closed or open) and camera shutter, respectively. (3) The
entire photography process is in a controllable environment
that switches off the room lights and shuts windows.

For ease of description, we consider the dataset capture
process based on a scene as an example. For a target back-
ground scene, we first capture a series of background scene
images under different lighting conditions as the backgrounds
of the dataset. To this end, under each lighting condition,
we only turned on the corresponding light and turned off
the other lights to ensure data quality. During the entire pro-
cess of capturing background scenes under different lighting
conditions, the camera pose and position of the light probe
remain fixed. The background capturing process is illustrated
in the first row of Figure 5.

Subsequently, we keep the above conditions constant and
place the foreground objects in the background scene. After
placing each foreground object, we repeat the same photog-
raphy steps to capture the background to record the entire
scene as the ground truth image. The process of capturing a
ground truth image is shown in the last row of Figure 5. To
increase the diversity of the data and simulate indoor light
sources, we also adjust different light sources directions, and
use extra light sources with different intensities to perturb the
foreground objects in random directions.

4.2 Image Composition and Pairing

With the illumination harmonization of the ground truth
images and background scene images, the non-illumination

harmonization composite image is produced by cutting the
foreground object from one ground truth image and pasting
it into another background scene image. Therefore, more
accurate masks are required to obtain high-quality composite
images. First, we test state-of-the-art algorithms [73, 75]
to automatically obtain masks, including foreground object
masks, background object-shadow pair masks, and the light
probe mask. However, due to the complexity of indoor scenes,
their effectiveness is far from satisfactory, which significantly
affects the composite quality of the dataset. Therefore, we
employ professional photo editors to annotate the masks
manually. Using these masks, we can effectively achieve
image composition and pairing, and the complete process is
shown in Figure 6.

As shown in Figure 6, for convenience, we introduce a
dataset composition process based on one scene and a fore-
ground object. We first use the foreground object mask to
multiply the corresponding global appearance and illumina-
tion harmonization ground-truth image to obtain a foreground
object under one illumination condition (Figure 6 (a)). Sub-
sequently, a background mask is used to perform the same
operation with the same background scene image under dif-
ferent illumination conditions to obtain the corresponding
insertion position of the foreground object (Figure 6 (c)). Us-
ing the foreground object and corresponding position scenes,
composite images are produced by pasting the foreground
object into the position scenes (Figure 6 (b)). In this manner,
we achieve all image composites for other foreground objects
and background scenes. In general, our dataset finally con-
tains 30000 seven-tuples in total, of which each seven-tuple
((Figure 6 (d)) consists of one input triplet and a ground
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Fig. 5 Acquisition of foreground objects and background scenes under different lighting conditions and their specific synthesis.

Fig. 6 Illustration of the image composition and pairing. (a) and (c) represent the process of obtaining the foreground object and the
corresponding insertion position in the background, respectively. (b) represents a simple composite process between foreground and
background. The bottom row (d) shows the paired result forming an input seven-tuple, which includes a foreground object mask, a background
shadow-object pair mask, the illumination images of the foreground and background scene, a naive composite image, a foreground object
illumination harmonization ground truth image and the global illumination consistency ground truth image.

truth quadruplet. The input triplet contains a naive composite
image, a corresponding foreground mask, and a background
object-shadow pair mask. The ground truth quadruplet con-
sists of the foreground illumination information, background
illumination information, object illumination harmonization
ground truth, and the global illumination harmonization
ground truth. One visual seven-tuple example is shown in
Figure 6 (d).

5 Experiments
To verify the superiority of our proposed Illuminator, we
compare our Illuminator with four state-of-the-art illumination
harmonization methods on the real-world RIH dataset, and
provide quantitative and qualitative assessments.

5.1 Experimental Settings and Evaluation Metrics.

Compared methods . We compared our illuminator with four
related baseline methods, where AICNet [35] and DIH [34]
performed the same task as in this work, and IntrinsicNet [29]
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Fig. 7 Visual comparison of our method with state-of-the-art methods on three real-world scenes with various materials and foreground
objects.
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Fig. 8 Visual results of our method. From (a) to (f) are input naive composite images, foreground object masks, background object-shadow
masks, shadow residual images, output global illumination harmonization results and the ground truth images, respectively.

Table 1 Results of quantitative comparison on our testing set. “↑” indicates the higher the better, and “↓” indicates the lower the better.
The best results are marked in bold.

Method RMSE ↓ SSIM ↑ fMSE ↓ fSSIM ↑
AICNet [35] 5.904 0.884 579.186 0.901

IntrinsicNet [29] 7.113 0.814 1024.256 0.891
SGRNet [30] 9.712 0.773 1417.211 0.862

DIH [34] 4.725 0.897 478.254 0.923
Ours 4.372 0.912 342.239 0.947

and SGRNet [30] were mainly focused on image harmony
and object shadow generation, respectively.We train and test
all these methods based on our real-world RIH dataset.

Evaluation Metrics. We used four metrics to evaluate
the image illumination harmonization results: relative mean
square error (RMSE), structural similarity index measure
(SSIM), foreground mean square error (fMSE), and fore-
ground structural similarity index measure (fSSIM). Gener-
ally, smaller RMSE and fMSE and larger SSIM and fSSIM
indicate better image illumination harmonization results.

5.2 Comparison with State-of-the-Arts

All methods are trained and tested on the training and testing
sets of RIH dataset, respectively. The quantitative comparison
results of different methods on the testing set are reported in
Table 1. Our Illuminator achieves better quantitative results
than other state-of-the-art methods on all four metrics. We
also observe that IntrinsicNet [29] is better than SGRNet [30]
in terms of the fMSE and fSSIM metrics. This is primarily
because IntrinsicNet [29] focuses on the image harmonization
task and fully accounts for the illumination of the foreground
object, whereas SGRNet [30] only focuses on foreground
object shadow generation and ignores object illumination con-
sistency. Besides, for the SSIM and RMSE metrics, DIH [34]
achieves the better results than AICNet [35], which is mainly
attributed to the fact that DIH [34] fully utilizes illumination
exchange module and multi-scale attention mechanism to
achieve the generation of foreground object shadows and

illumination. Our Illuminator obtains the best performance,
mainly because Illuminator considers global illumination
consistency and constructs an effective GCN with the CFBA
mechanism to fully model the spatial interaction relation
between the foreground and the background.

Figure 7 shows some visual comparison results. Among
these competing methods, we observe that IntrinsicNet [29]
mainly targets image appearance harmonization and fails to
address foreground object shadow generation. Although AIC-
Net [35] considers image appearance and illumination harmo-
nization, it uses spherical harmonic parameters to represent
illumination, and cannot model detailed high-frequency illu-
mination information (see the visual results of AICNet [35] in
Figure 7). In addition, neither ACINet [35], SGRNet [30] nor
DIH [34] can effectively handle foreground object shadow
generation in complex indoor scenarios. In contrast, our
method achieve the best visual results with plausible fore-
ground object shadows and harmonious object illumination.
Figure 8 presents some image illumination harmonization
results produced by Illuminator. The fourth column (d) shows
the generated object shadow residual marked with a striking
colour. Our Illuminator effectively achieves image illumina-
tion harmonization in indoor scenes.

5.3 Ablation Study

To verify the effectiveness of each design choice of our
Illuminator, we conduct an ablation study by modifying the
Illuminator architecture to evaluate the performance of the
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Fig. 9 The first row and the second row are visualization results of ablated versions of the SSTM and CFBA, respectively. For the top
row, from (a) to (g) are the input composite image (a), foreground object mask (b), the corresponding different output results: baseline (c),
BFSM×2 (d), BFSM×3 (e), BFSM×4 (f), and the corresponding ground truth images (g). In the bottom row, from left to right are the input
composite image (a), foreground object mask (b), baseline (c), w/o CFBA (d), w/o GAI (e), Ours (f) and the corresponding ground truth
images (g), respectively.

proposed cross foreground-background attention-aware graph
convolutional mechanism (CFBA) and shading style transfer
module (SSTM).

Specifically, to investigate that the shading style transfer
module is crucial for object illumination harmonization tasks,
we conduct four experiments including Illuminator without
SSTM as baseline, Illuminator with SSTM consisting of
2, 3, 4 BFSMs, that is, BFSM×2, BFSM×3, BFSM×4,
respectively.

From Table 2, we can observe that our method (Illumi-
nator / (BFSM×3)) achieves the best performance on all
four evaluation metrics. Comparing Illuminator / (BFSM×3)
with the baseline, our method shows the great superiority.
This strongly demonstrates the importance of BFSM×3 for
illumination harmonization in our method. However, when
we use BFSM×2, although the performance is better than
that of the baseline, it is not as good as BFSM×3. The results
for the BFSM×4 show that more parts do not guarantee that
better performance but consumes more time and memory for
training and testing. To demonstrate the roles of these com-
ponents intuitively, the first row in Figure 9 presents different

Table 2 Ablation study of the shading style transfer module
(SSTM). “Baseline” denotes our method without BFSM module,
and BFSM×2, BFSM×3, BFSM×4 indicates using 2, 3, and 4
BFSMs, respectively. The best results are marked in bold.

Method RMSE ↓ SSIM ↑ fMSE ↓ fSSIM ↑
Baseline 6.019 0.821 898.417 0.703

Illuminator / (BFSM×2) 5.891 0.860 566.712 0.928
Illuminator / (BFSM×3) 4.372 0.912 342.239 0.947
Illuminator / (BFSM×4) 4.403 0.891 369.702 0.941

visual illumination harmonization results. We observe that
the Illuminator with the BFSM×3 and BFSM×4 generate
the better illumination harmonization result, while BFSM ×4

requires more parameters and time consumption.

Fig. 10 Quantitative results of ablation study of the shadow residual
generation module (CFBA).

Section 3.1 introduces a cross foreground-background
attention-aware graph convolutional mechanism (CFBA) for
foreground object shadow residual generation. We also an-
alyze the performance of different settings. To verify the
effectiveness of CFBA, we compare our Illuminator with its
three ablated versions: 1) baseline, that is, removing CFBA
and global auxiliary information (GAI); 2) w/o GAI, that is,
indicating the CFBA module without GAI; 3) w/o CFBA, that
is, retaining GAI while replacing the CFBA with two simple
CNN modules. From Figure 10, we can see that our Illumi-
nator achieves better performance than the other components
in RMSE and SSIM metrics. Compared to the baseline, our
method improves 0.684 and 0.102 in RMSE and SSIM, re-
spectively. The second row in Figure 9 shows the results of
different components, and we can see that baseline fails to
produce a foreground object shadow, mainly because of the
lack of effective modeling of the relative position relationship
between the foreground and the background. Although both
without CFBA and without GAI generated object shadows,
their results are poor. Contrastly, our Illuminator achieves
reasonable and satisfactory results.
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5.4 User Study on Real Composite Images

To further verify the generalization capability of our illu-
minator, we collect 100 additional real composite images
outside the RIH dataset and compare the illuminator with the
four baseline methods. These real composite images do not
have corresponding ground-truth images and contain back-
ground scenes and foreground objects that differ significantly
from those in the RIH dataset. Following [25, 27, 29], we
conduct a user study on the collected images. Specifically,
given an input composite image, we can obtain five different
illumination harmonization results by using different meth-
ods (four baselines and our method). Then, we create image
pairs according to randomly choosing two images from five
images. Therefore, we can obtain 1000 image pairs based
on 100 composite images. We then recruit 100 participants
and require them to select the visually more realistic image
for each pair. Finally, we collect 100000 pairwise results in
total and calculate the global ranking of all methods using
the Bradley-Terry model (B-T model) [76, 77] .

Figure 11 shows the B-T scores of Illuminator and the four
baseline methods. The proposed Illuminator obtains the high-
est score. This demonstrates that our method still generalizes
well to unseen images outside the dataset. Figure 12 shows
the visual illumination harmonization results obtained by our
method for two other real-word images randomly selected
from the collected images.

Fig. 11 B-T scores of different methods on our collected images.

5.5 Limitations

Our Illuminator has the following limitations. (1) Illuminator
fails to achieve satisfactory illumination harmonization for
multiple target objects in a scene. (2) Illuminator may produce
unrealistic illumination harmonization results for natural
scenes illuminated by multiple light sources.

Fig. 12 Illumination harmonization results of our method on other
real composite images. From (a) to (c) are input naive composite
images, the corresponding foreground object masks, and our results,
respectively.

Fig. 13 Limitations of our method. The first row is the multi-
object illumination harmonization result, and the second row is
the illumination harmonization result under the multi-light sources
condition. (a), (b) and (c) are the input composite images, the outputs
of our method and the ground truth images, respectively.

Figure 13 (first row) shows an example of limitation (1).
Although we can perform an illumination harmonization
operation for each object to achieve multi-object illumina-
tion harmonization using our method, this is not an ideal
way. Our method fails to achieve satisfactory illumination
harmonization results when editing multi-object at the same
time.

From the second row of Figure 13, Illuminator fails to
address multi-light source image illumination harmoniza-
tion, that is, Limitation (2). Because our method focuses on
image-based illumination harmonization without explicitly
estimating any 3D information, solving this limitation based
on 2D scenes is interesting but challenging and is left as our
future work.

6 Conclusion and Future Work
In this work, we have presented an image-based object illu-
mination editing method called Illuminator for indoor scene
illumination harmonization, which focuses on producing more
realistic illumination harmonization results for challenging
indoor scenes. First, we construct a large-scale, high-quality
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RIH dataset for real-world indoor illumination harmonization
task, and propose a simple yet effective approach to obtain
real datasets for other related tasks like shadow generation
and removal, image inpainting, and scene relighting.

We then propose a novel illumination harmonization
method named Illuminator, which consists of a shadow resid-
ual generation branch and an object illumination transfer
branch, achieving physically more realistic global illumi-
nation harmonization results. The shadow residual genera-
tion branch introduces a novel cross foreground-background
attention-aware graph convolutional mechanism to model the
spatial interaction relationship between the foreground and
background, producing plausible shadows for foreground ob-
jects. The object illumination transfer branch mainly focuses
on achieving illumination consistency between the foreground
and background from a shading style perspective. Using these
branches, our Illuminator can produce realistic illumination
harmonization results and achieve the best performance in
terms of both quantitative metrics and qualitative effects.
In the future, we plan to extend our Illuminator to address
illumination harmonization in complex natural scenes with
multiple objects and light sources.
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