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Figure 1: Illumination editing effects. Given an composite image, our goal is to harmonize the foreground object and generate
its cast shadow. From left to right are composite image, DIH-GAN, SGDiffusion and our method, Ground Truth, respectively.

ABSTRACT
We propose a method for lighting and shadow editing of outdoor
disharmonious composite images, including foreground harmoniza-
tion and cast shadow generation. Most existing works can only per-
form foreground appearance editing task or only focus on shadow
generation. In fact, lighting not only affects the brightness and color
of objects, but also produces corresponding cast shadows. In recent
years, diffusion models have demonstrated their strong generative
capabilities, and due to their iterative denoising properties, they
have a significant advantage in image restoration task. But it fails
to preserve content structure of image. To this end, we propose
an effective model to tackle the problem of foreground lighting-
shadow editing. Specifically, we use a coarse shadow prediction
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module (SP) to generate coarse shadows for foreground objects.
Then, we use the predicted results as prior knowledge to guide
the generation of harmony diffusion model. In this process, the
primary task is to learn lighting variation to harmonize foreground
regions, the secondary task is to generate high-quality cast shadow
containing more details. Considering that existing datasets do not
support the dual tasks of image harmonization and shadow genera-
tion, we construct a real outdoor dataset, named IH-SG, covering
various lighting conditions. Extensive experiments conducted on
existing benchmark datasets and the IH-SG dataset demonstrate
the superiority of our method.
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1 INTRODUCTION
Image coposite refers to the process of combining images from
different sources to create new images, which has a variety of appli-
cations like advertisement propaganda and digital entertainment.
However, due to variations in lighting conditions, camera parame-
ters, and other factors, composite images often have inconsistent
lighting statistics compared to real images. This necessitates image
harmonization to adjust the appearance of the foreground for vi-
sual consistency. Additionally, most existing image harmonization
methods focus solely on the lighting effects of foreground. However,
lighting also produces corresponding cast shadows, which provide
important clues about object shape, position, and relative depth.
Therefore, shadow generation is equally essential for achieving
lighting-shadow consistency.

For image harmonization, most traditional methods [5, 21, 33,
34, 36, 46, 48, 54] focus on matching low-level appearance statistics.
They fail to solve the significant appearance differences between
foreground and background images. Deep learning-based methods
provide powerful capabilities for modeling regional appearances to
facilitate harmonization. Somemethods [9, 50] explore the semantic
information to reconstruct coordinated images. Several methods
[6, 8, 17, 26] explore domain adaptation to bring the predicted fore-
ground closer to the original background domain. These methods
treat the background image as a whole and may ignore changes in
spatial lighting. Guo et al. [16] introduced the Retinex theory into
the image harmonization task. But intrinsic decomposition itself
is a difficult problem. The methods [14, 15] explore Transformer-
based method for image harmonization. Considering the limitations
of existing datasets, self-supervised or semi-supervised methods
are proposed [22, 30, 32, 52]. The methods [7, 12] adjust the image
through color transformation, but ignore lighting effects. Tan et al.
[47] used unrelated L, a, b features to guide image reconstruction,
which can better adjust brightness.

For shadow generation, rendering-based methods [42–44] re-
quire explicit knowledge of lighting, reflectance, material proper-
ties, and scene geometry to generate shadows for inserted virtual
objects using rendering techniques. However, obtaining such knowl-
edge is often impractical in real-world scenarios. The estimated
results are influenced by the accuracy of the input information
[11, 20]. Deep learing-based methods [19, 28], on the other hand,
directly learn the mapping from input images to output images
with foreground shadows, without requiring explicit knowledge of
lighting, reflectance, etc. Bao et al. [2] considered both harmonizing
the foreground objects and generating reasonable shadows for the
foreground objects. But this method only focuses on indoor images.

To address these issues, we propose a novel method for both
image harmonization and shadow generation in this paper. As our
task requires generating plausible cast shadows for the foreground
objects, we develop a coarse shadow prediction module to effec-
tively utilize background information to generate coarse shadows
for foreground objects. Considering the powerful generation capa-
bility of diffusion models, inspired by [13], we exploit a conditional
diffusion model as the backbone network. Compared to textual
information, images provide rich structural and semantic features
to assist in image reconstruction, so we use composite image with
coarse shadows as a condition to guide the diffusion model. The

harmonization diffusion model can better guide the lighting edit-
ing of inserted objects, bridge the lighting gap between inserted
objects and background environments. Additionally, the diffusion
model can iteratively refine the shadow regions, and achieves more
realistic shadow effects closer to real images.

The existing dataset are not well-suited for our task. IHarmony4
[8] provides different color conversions but lacks attention to light-
ing. RealHM [22] and RdHarmony [3] require a significant amount
of manpower and technical resources. CcHarmony [32] focuses on
realistic lighting changes, but has a complex filming process. Shad-
owAR dataset [28] is collected through rendering models. However,
the attributes of shadows may also not match those of real images.
DESOBA and DESOBAv2 [19, 29] use real images as target images
to remove shadows from the foreground to generate composite
images. Bao et al. [2] proposed an indoor dataset for foreground
harmonization and shadow generation, but only focusing on indoor
scenes. In this paper, we construct a new outdoor real-world dataset
(IH-SG) for image harmonization and shadow generation tasks.

Our contributions can be summarized as follows:
• We construct a new outdoor real-world dataset (IH-SG) for
image harmonization and shadow generation task.

• We propose a new image lighting-shadow editing method
based on conditional diffusion model, which can achieve
controllable harmonization of foreground regions and rea-
sonable generation of cast shadows.

Extensive experiments conducted on public datasets and our IH-SG
dataset demonstrate the effectiveness of our method.

2 RELATEDWORK
2.1 Image Harmonization
Traditional image harmonization methods primarily focus on ad-
justing the low-level appearance statistics between foreground
objects and the background, such as color statistics [5, 34, 36, 54],
and gradient information [21, 33, 48]. The limited representation
capability of low-level features can negatively impact their perfor-
mance. Especially when there are significant differences between
the foreground and background regions.

Recent research has built reasonably sized datasets [8, 22, 32] to
advance learning-based approaches. CNN-based methods analyze
semantic information [9, 50]. Since image harmonization adjusts
the foreground lighting or style to match the background, domain
adaptationmethods [6, 8, 26] have also been proposed to explore the
idea of domain harmonization. Guo et al. [16] introduced Retinex
theory into the image harmonization task and decomposed the
synthetic image into reflectance and illumination. With the rise of
Transformers, Guo et al. [14, 15] applied the Transformer frame-
work to image harmonization task. But intrinsic decomposition is
a difficult problem. Some methods treat image harmonization as
a style transfer problem. These methods have achieved advanced
research results through contrastive learning [17], high resolution
[23] or color space adjustment [7, 12, 47]. Shen et al. [41] trained
Global Perception Adaptive Coordination Kernel. Bao et al. [2] gen-
erated harmonious objects and shadows on a synthetic dataset. Bao
et al. [1] fouses on indoor scenes. In the concurrent work, Yu et
al. [55] uses stable-diffusion model to handle image harmonization
and shadow generation tasks. Unlike existing methods, we learn
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(a) Input (b) GT (c) 𝑀𝑓 𝑜 (d) 𝑀𝑓 𝑠 (e) 𝑀𝑏𝑜 (f) 𝑀𝑏𝑠

Figure 2: IH-SG dataset. From left to right, they are composite images, real images, foreground object masks, foreground shadow
masks, background object masks and background shadow masks, respectively.

Figure 3: The pipeline of dataset construction. This figure
shows the process of obtaining real images and composite
images.

.

the illumination of images through diffusion model to generate illu-
mination for the foreground object consistent with the background,
as well as corresponding cast shadow.

2.2 Shadow Generation
The existing work on shadow generation can be divided into two
categories: rendering-based methods and image-to-image transla-
tion methods. Rendering-based methods require explicit knowledge
of lighting, reflectance, and scene geometry to generate shadows for
inserted virtual objects using rendering techniques. However, such
detailed knowledge relies on user input [24, 27] or model prediction
[11, 25]. Sheng et al. [43] explored the generation of controllable
soft shadows, introduced the concept of pixel height [42, 44] and
explored the correlation between objects, ground, and camera poses.
In the absence of user interaction, Gardner [11] attempted to re-
cover explicit lighting conditions and scene geometry based on a
single image, but inaccurate estimates may lead to unsatisfactory
results.

Image-to-image translation methods learn the mapping from
input images without foreground shadows to output images with
foreground shadows, without requiring explicit knowledge of light-
ing, reflectance, etc. Hu et al. [20] proposed a method that can adapt
to different scenarios, but failed to generate shadows in complex

scenes. ShadowGAN [58] utilizes both global and local conditional
discriminator to enhance the realism of generated shadows. Liu et
al. [28] released the ShadowAR dataset and proposed an attention-
guided network for shadow generation. Yan et al. [19] addressed
real-world scenes and generated plausible shadows. SGDiffusion
[29] focuses on the shadow generation problem based on a diffu-
sion model. DMASNet [49] decomposes shadow mask prediction
into box prediction and shape prediction. However, the shadows
generated by these methods are still not accurate enough.

2.3 Diffusion Model
Diffusion-based generative models recently produced amazing re-
sults with improvements adopted in denoising diffusion proba-
bilistic models [18], which becomes increasingly influential in the
field of low-level vision tasks, such as superresolution [40], inpaint-
ing [31], and colorization [39]. The methods [35, 37, 38] explored
different modal conditions into the diffusion process, achieving
controllability of the generated content of the generative model.
Pallette [39] was proposed as a general image-to-image framework
to solve the image restoration with conditional denoising diffusion
probability models. The methods [56, 57] were proposed to generate
results towards expectations. However, most of these methods focus
on synthetic degradation, such as image coloring, image restora-
tion, and super-resolution. In this paper, we explore the problem of
foreground harmony and shadow generation in the real world with
limited training pairs. We build our model upon shadowdiffusion
[13] to address the above issues.

3 IH-SG DATASET
Lighting not only results in different color brightnesses of fore-
ground objects but also leads to the generation of corresponding
cast shadows. In this paper, we simultaneously focus on the harmo-
nization of foreground objects and the generation of corresponding
realistic shadows. Therefore, we have constructed a high-quality
real outdoor dataset IH-SG, including composite images 𝐼𝑐 , real
images 𝐼𝑟𝑒𝑎𝑙 , foreground obeject masks 𝑀𝑓 𝑜 , foreground shadow
masks𝑀𝑓 𝑠 , background object masks𝑀𝑏𝑜 and background shadow
masks𝑀𝑏𝑠 .

3.1 Image Collection
We take photos outdoors that meet our requirements, includ-
ing background images, real images, and relighting images. The
pipeline of data cconstruction is illustrated in Figure 3.
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Figure 4: Pipeline of the proposed method. IH-SG Diffusion model includes coarse shadow prediction network (SP) and denoise
network 𝑓𝑡 . Given a disharmonious image, our model can generate a harmonious image with controllable foreground objects
and reasonable cast shadows.

Background images 𝐼𝑏𝑎𝑐𝑘 : During the shooting process, it is
necessary to choose appropriate weather conditions and time period
to avoid excessively dim or harsh lighting conditions. Rainy days,
sunrise or sunset periods are not suitable for data shooting because
the lighting during these periods undergoes significant changes.
Moreover, the appropriate shooting angle and position are crucial.
To ensure the stability of the camera, we stabilize it on a tripod and
control it through a mobile device.

Real images 𝐼𝑟𝑒𝑎𝑙 :Without altering camera parameters, posi-
tions, etc., placing foreground objects and capturing images to be
used as real images in the training set. The camera remains stable
throughout the process, ensuring consistency between background
and real images, thus reducing alignment and correction efforts
during subsequent image synthesis. Rapid placement of foreground
objects generally assumes minimal changes in lighting between
background and real images captured in a short time.

Relighting foreground images 𝐼 𝑖
𝑟𝑒𝑙𝑖𝑔ℎ𝑡

:Without altering the
shooting scene or camera position, we employ appropriately sized
and shaped shading equipment to shade the scene, ensuring that
neither the camera nor the objects are affected. Shading equipment
is utilized to effectively block external light interference. Placing
lights and adjusting their brightness and direction to illuminate fore-
ground objects. Camera parameters such as exposure time, aperture
size, and ISO sensitivity are adjusted based on the actual shooting
environment and lighting conditions to achieve the desired expo-
sure effects. Subsequently, adjust the lighting conditions to capture

different relighted images 𝐼 𝑖
𝑟𝑒𝑙𝑖𝑔ℎ𝑡

, 𝑖 ∈ 𝑁 , where N represents dif-
ferent lighting conditions.

3.2 Image Synthesis
Based on background image 𝐼𝑏𝑎𝑐𝑘 and relighting images 𝐼 𝑖

𝑟𝑒𝑙𝑖𝑔ℎ𝑡
,

composite image 𝐼𝑐 can be obtained. To obtain refined data, we used
Photoshop to obtain corresponding masks, including foreground
object mask𝑀𝑓 𝑜 , foreground shadowmask𝑀𝑓 𝑠 , background object
mask 𝑀𝑏𝑜 , and background shadow mask 𝑀𝑏𝑠 . Then, we obtain
composite images:

𝐼𝑐 = 𝐼𝑟𝑒𝑙𝑖𝑔ℎ𝑡 ×𝑀𝑓 𝑜 + 𝐼𝑏𝑎𝑐𝑘 ×
(
1 −𝑀𝑓 𝑜

)
. (1)

Then, 𝐼𝑐 and 𝐼𝑟𝑒𝑎𝑙 form a pair of input composite image and ground-
truth target image. Due to shooting conditions, there may be signifi-
cant differences between the background images and the real images
in the background area. If there are differences in color or brightness,
some image processing can be use, such as color transfer [53]. Addi-
tionally, some unsuitable images could be filtered out. After that, we
obtained 15k tuples in the form of

{
𝐼𝑐 , 𝑀𝑓 𝑜 , 𝑀𝑓 𝑠 , 𝑀𝑏𝑜 , 𝑀𝑏𝑠 , 𝐼𝑟𝑒𝑎𝑙

}
,

which will be used for model training.

4 METHOD
4.1 Problem Definition
The input is a tuple (𝐼𝑐 , 𝑀𝑓 𝑜 ), where 𝐼𝑐 ∈ 𝑅𝐻×𝑊 ×𝐶 , with 𝐻 and𝑊
representing the height and width of image, and𝑀𝑓 𝑜 ∈ 𝑅𝐻×𝑊 ×1.
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This model aims to generate foreground object that is consistent
with the background, and to generate reasonable cast shadow.

4.2 Coarse Shadow Predict Module
As shown in Figure 4, the coarse shadow prediction module aims to
predict cast shadows for foreground objects, including a background
feature extraction network (BE) and a shadow generation network
(SG). The composite image and foreground object mask are the
inputs.

4.2.1 Background Extraction Module. Inspired by [4, 10], we
know the key areas in the image are crucial. For the shadow gen-
eration task, although complete background information may pro-
vide more details, it does not directly yield reasonable shadows
for image-to-image transformation networks. This is because it
may not adequately focus on objects and their shadow information.
Therefore, we propose a BE module to learn relevant information
from the background image to generate attention maps for refer-
ence objects and their shadows.

The module adopts an encoder-decoder network with an atten-
tion mechanism as basic architecture, comprising an encoder and
two decoders. The composite image without foreground object
shadow and foreground object mask are concatenated along the
channel dimension and serve as input to the encoder 𝐸. The ex-
tracted high-level features are fed into two separate branches of
decoders. One decoder 𝐷1 predicts the reference object mask𝑀𝑏𝑜 ,
while the other decoder 𝐷2 predicts the corresponding shadow
mask𝑀𝑏𝑠 :

𝑀𝑏𝑜 = 𝐷1 (𝐸 (𝐼𝑐 )), (2)

𝑀𝑏𝑠 = 𝐷2 (𝐸 (𝐼𝑐 )). (3)

4.2.2 Shadow Generation Module. Given a composite image 𝐼𝑐
without foreground shadow and a foreground object mask𝑀𝑓 𝑜 , this
module aims to generate coarse foreground shadow 𝐼𝑠ℎ𝑎𝑑𝑜𝑤 . The
specific network structure is as follows: Two same encoders, one
decoder, and one special channel-spatial cross-attention mechanism
(CSCA).

Through the BE module, we can identify key areas in the back-
ground image that are beneficial for shadow generation. Inspired by
[19], in order to better utilize the information in the background, we
adopt foreground encoder 𝐸𝐹 and background encoder 𝐸𝐵 , respec-
tively. The foreground encoder 𝐸𝐹 takes the concatenation of the
composite image 𝐼𝑐 and the foreground object mask𝑀𝑓 𝑜 as input,
generating a foreground feature map 𝑋𝑓 . The background encoder
𝐸𝐵 takes the concatenation of 𝐼𝑐 and 𝑀𝑏𝑜𝑠 as input to generate a
background feature map 𝑋𝑏 :

𝑋𝑓 = 𝐸𝐹 (𝐼𝑐 , 𝑀𝑓 𝑜 ), (4)

𝑋𝑏 = 𝐸𝑏 (𝐼𝑐 , (𝑀𝑏𝑜 +𝑀𝑏𝑠 )) . (5)
Inspired from the existing attention methods [51], we introduce
a channel-spatial cross-attention (CSCA) to assist the foreground
feature map 𝑋𝑓 in obtaining relevant reference information from
the background feature map 𝑋𝑏 . Then, the decoder D is used to
predict coarse shadow images 𝐼𝑠ℎ𝑎𝑑𝑜𝑤 for foreground objects and
refine the corresponding mask𝑀𝑠ℎ𝑎𝑑𝑜𝑤 :

𝐼𝑠ℎ𝑎𝑑𝑜𝑤 , 𝑀𝑠ℎ𝑎𝑑𝑜𝑤 = 𝐷 (𝐶𝑆𝐶𝐴(𝑋𝑓 , 𝑋𝑏 )) . (6)

4.2.3 Channel-Spatial Cross-AttentionModule. Obtaining rel-
evant illumination information is crucial for generating accurate
foreground shadows. Inspired by previous attention-based methods
Equation (13), we used a Channel-Spatial Cross-Attention Module
(CSCA), as shown in Figure 5, to help the foreground feature map
𝑋𝑓 extract relevant illumination information from the background
feature map 𝑋𝑏 . By constructing the relative positional relationship
between reference information and foreground through this mod-
ule, it effectively guides the generation of foreground shadows in a
reasonable direction.

Figure 5: Channel-Spatial Cross-Attention Module. It in-
cludes channel cross-attention and spatial cross-attention
sub-modules.

.

Channel cross-attention: To project foreground and back-
ground features into a common space, we reshape 𝑋𝑓 ∈ 𝑅𝑊 ×𝐻×𝐶

to 𝑋𝑟
𝑓
∈ 𝑅𝑊𝐻×𝐶 and 𝑋𝑏 ∈ 𝑅𝑊 ×𝐻×𝐶 to 𝑋𝑟

𝑏
∈ 𝑅𝑊𝐻×𝐶 . Then, we

compute the dependencies between any two elements of 𝑋𝑓 and
𝑋𝑏 in the global context:

𝐴 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
(𝑋𝑟

𝑓
)𝑇𝑋𝑟

𝑏

)
. (7)

Using the obtained similarity map A, we incorporate information
from 𝑋𝑟

𝑓
, then reshape it, and obtain the weighted feature map 𝑋𝑏2:

𝑋𝑏2 = 𝑋𝑓 + 𝑟𝑒𝑠ℎ𝑎𝑝𝑒
(
𝑋𝑟
𝑏
𝐴

)
. (8)

Spatial cross-attention: Similar to the channel cross-attention,
we reshape 𝑋𝑓 ∈ 𝑅𝑊 ×𝐻×𝐶 to 𝑋𝑟

𝑓
∈ 𝑅𝑊𝐻×𝐶 and 𝑋𝑏2 ∈ 𝑅𝑊 ×𝐻×𝐶

to 𝑋𝑟
𝑏2 ∈ 𝑅𝑊𝐻×𝐶 . Then we compute the similarity between feature

maps:

𝐵 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑋𝑟
𝑓
(𝑋𝑟

𝑏2)
𝑇
)
. (9)

Using the obtained similarity image B and weight 𝑋𝑟
𝑏2, we then

reshape it to obtain the weighted feature map 𝑋𝐶𝑆𝐶𝐴:

𝑋𝐶𝑆𝐶𝐴 = 𝑋𝑏2 + 𝑟𝑒𝑠ℎ𝑎𝑝𝑒
(
𝐵𝑋𝑟

𝑏2

)
. (10)



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Jing Zhou, Ziqi Yu, Zhongyun Bao, Gang Fu, Weilei He, Chao Liang, and Chunxia Xiao

(a) Input (b) Ours (c) DIH-GAN (d) ObjectStitch (e) DucoNet (f) SGDiffusion (g) ARshadowGAN (h) GT

Figure 6: Three testing cases of diferent methods on IH-SG dataset. From left to right are composite images, our results,
DIH-GAN [2], ObjectStitch [45], DucoNet [47] and the SGDiffusion [29], ARshadowGAN [28] and ground truth, respectively.

(a) Input (b) DucoNet (c) CDTNet (d) Harmonizer (e) Ours (f) GT

Figure 7: Comparisons on iharmony4 dataset. From left to right are composite images, the results of DucoNet [47], CDTNet [7] ,
our results, and ground truth, respectively.

4.3 Harmony Diffusion Module
Controlling the generation of desired images in a controllable man-
ner poses a challenging task for diffusion models. Especially when
the objective is to obtain harmonious foreground images, it is cru-
cial to ensure that the foreground and background share the same
lighting distribution while preserving the content and structural
information of the foreground objects. With the introduction of
CLIP technology, text-guided diffusion models offer some control-
lable guidance. However, we recognize that images often provide
more information than long texts. Therefore, in this module, we
use compsite images with coarse shadows as conditions to guide
the controllable generation of the diffusion model.

Diffusion model generates an image 𝑥0 by denoising a random
image following a Gaussian distribution 𝑥𝑇 ∼ N(0, I). This model

mainly uses multiple denoising steps𝑥𝑇−1, ..., 𝑥0 to gradually bring
the image 𝑥0 closer to the data distribution. Diffusion model is
divided into forward diffusion and inverse denoising phases.
Forward process. To construct training data, the forward process
involves adding noise perturbations to the training image 𝑥0 to
generate noisy data 𝑥1, ..., 𝑥𝑇 :

𝑥𝑡 =
√
𝛼𝑡𝑥0 + (1 − 𝛼𝑡 )𝜖, (11)

with 𝜖 ∼ N(0, I), and 𝛼𝑡 =
∏𝑡

𝑠=0 𝛼𝑠 =
∏𝑡

𝑠=0 (1 − 𝛽𝑠 ).
Reverse process. The reverse process aims to derive the posterior
distribution for the less noisy image 𝑥𝑡−1 given the more noisy
image 𝑥𝑡 using the denoising network 𝑓𝜃 :

𝑝 (𝑥𝑡−1 |𝑥𝑡 , 𝑥0) ∼ N (𝑥𝑡−1; 𝜇𝑡 (𝑥0, 𝑥𝑡 ), 𝜎2
𝑡 I) . (12)
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In addition to adjusting the lighting effect of foreground objects,
there are also issues with predicting rough shadows in the previous
stage, which require further refinement through the network. We
have observed the following issues:

• The shape of the shadows generated in the previous stage is
unrealistic.

• The lighting of the foreground is inconsistent with the back-
ground image.

We use composite images with coarse foreground object shadow (𝑦)
as conditional guidance to generate harmonized foreground object
with realistic cast shadow. We train the denoising network 𝑓𝜃 to
predict 𝑥0 instead of the noise 𝜖 :

𝑥0,𝑚𝑡−1 = 𝑓𝜃 (𝑥𝑡 , 𝑦,𝑚, 𝑡) . (13)

where𝑚 is the predicted foreground object-shadow mask. Follow-
ing [18], our harmony diffusion model objective function is:

L𝑝𝑖𝑥 =


𝑥𝑔𝑡 − 𝑥0



2
2 , (14)

where 𝑥𝑔𝑡 is the real image. Considering that we need to iteratively
optimize the shadow area, we also need to calculate the loss be-
tween the foreground object-shadow mask𝑚𝑓 and the generated
foregroung object-shadow mask𝑚𝑡 for our method :

L𝑚𝑎𝑠𝑘 =


𝑚𝑓 −𝑚𝑡



2
2 . (15)

Therefore, the total loss can be formulated as:

L𝑇𝑜𝑡𝑎𝑙 = L𝑝𝑖𝑥 + 0.2 × L𝑚𝑎𝑠𝑘 . (16)

5 EXPERIMENTS
5.1 Experimental Setups
The proposed method is implemented using PyTorch, and training
is performed using two GeForce RTX 3090. The training epoch
is set to 1000. We utilize the Adam optimizer with a momentum
of (0.9, 0.999). The initial learning rate is set to 0.9. We employ
the Kaiming initialization technique to initialize the weights of
the proposed model, and use a 0.9999 exponential moving average
(𝐸𝑀𝐴) throughout all experiments. The diffusion model adopts
DDIM. We adopt a U-Net architecture similar to the denoiser 𝜖𝜃
in [13]. Training is carried out with 200 diffusion steps T and a
noise schedule 𝛽𝑡 that linearly increases from 0.0001 to 0.02, and
inference is performed with 200 steps.

5.2 Dataset and Evaluation Metrics
We evaluated the performance of our method on IH-SG for image
harmonization and shadow generation tasks. We resized the images
to a size of 256 × 256 pixels. We calculated the Root Mean Square
Error (RMSE), the Structural Similarity Index (SSIM) , fMSE, fSSIM
for the generated images. And fMSE (resp., fSSIM) means MSE
(resp., SSIM) within the foreground regions. In general, smaller
values of RMSE and fMSE and larger values of SSIM and fSSIM
indicate better quality of the generated images.

5.3 Comparison with Baselines
We compare with following methods: DIH-GAN [2], ObjectStitch
[45], DucoNet [47], SGDiffusion [29] and ARshadowGAN [28].

Table 1: Quantitative comparison on our testing set. "↑" in-
dicates the higher the better, and "↓" indicates the lower the
better. The best results are marked in bold.

Method RMSE ↓ SSIM ↑ fMSE ↓ fSSIM ↑
DucoNet [47] 7.249 0.858 452.65 0.917
DIH-GAN [2] 6.108 0.849 579.12 0.886

ObjectStitch [45] 9.487 0.762 1249.48 0.794
ARshadowGAN [28] 9.146 0.812 977.81 0.807
SGDiffusion [29] 8.727 0.833 868.92 0.811

Ours 5.248 0.923 374.89 0.935

(a) Input (b) 𝑀𝑏𝑜 (c) 𝑀𝑏𝑠 (d) SP result (e) GT

Figure 8: Shadow prediction module. The second and third
columns reflect themodule’s attention to background objects
and their shadows.

Quantitative comparison. Table 1 reports the comparison re-
sults on IH-SG test set. It can be observed that our method achieves
the best quantitative results across all four evaluation metrics. This
is mainly because the existing image harmonization methods strug-
gle to generalize well to outdoor real-world datasets, while the
existing shadow generation methods either rely on simple estima-
tions of foreground shadow masks or directly generate shadows
using learned data distributions. Such inaccurate estimations often
lead to inferior results. In contrast, our method leverages the coarse
shadow prediction module (SP) to effectively utilize background in-
formation, and the harmonization diffusion model can better guide
the lighting editing of inserted objects, bridge the lighting gap be-
tween inserted objects and background environments. Additionally,
by iteratively refining shadow regions, our method achieves more
realistic shadow effects closer to real images.

Visual comparison.We provide some visual comparison results
in Figure 6. It can be observed that our method not only achieves
lighting variations across different scenes but also achieves the
best visual effects of realistic shadows. Among these competing
methods, for ARShadowGAN, it is difficult to edit object lighting,
and the generated shadows are not accurate in shape and direction.
On the other hand, SGDiffusion can generate relatively accurate
shadows but still lacks in shape and shadow color accuracy. As for
DucoNet, they fail to generalize well to outdoor real-world datasets.
It aims to achieve visual harmony in images, which does not ef-
fectively address the problem of object shadows. The semantics of
the image generated by the ObjectStitch have changed. In contrast,
DIH-GAN, with its multi-scale attention mechanism and lighting
feature exchange mechanism, can automatically infer object shad-
ows and lighting generation. However, the shadows generated by
this method lack completeness in details. In comparison, our model
can harmonize foreground objects and generate realistic and rea-
sonable cast shadows.
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(a) Input (b) w/o y (c) w/o SP (d) w/o CSCA (e) Full (f) GT

Figure 9: Ablation study results. The pictures fully demon-
strate the effectiveness of image condition (y), coarse shadow
prediction module (SP) and channel-spatial cross-attention
module (CSCA).

(a) Input (b) Our (c) SGDiffusion (d) GT

Figure 10: The results on the shadow generation dataset. The
first row is image from the shadowAR dataset, and the last
row is image from the DESOBAv2 dataset.

5.4 Ablation Study
We study the impact of image condition y, shadow prediction mod-
ule (SP), and channel-spatial cross-attention (CSCA) mechanism of
our method on test images from IH-SH. The results are shown in
Table 2, Figure 9.

Figure 8 visualizes the coarse shadow prediction module. It can
be observed that model can effectively focus on the relevant areas
in the background image, such as background objects and their
shadows, and predict approximately correct shadows.

To demonstrate the effectiveness of image conditions, we re-
moved the guidance from images, denoted as "w/o y". The perfor-
mance of "w/o y" is inferior compared to other models, indicating
that utilizing image-condition guidance better preserves content
structural information.

To investigate the necessity of the coarse shadow prediction
module SP, we removed this module, referred to as "w/o SP". It can
be observed that without the SP module, there is a slight deficiency
in shadow generation, and even the direction may be inaccurate.
The performance of "w/o SP" is inferior to that of the full model,
demonstrating the advantage of extracting background information
and estimating coarse shadow regions.

To demonstrate the effectiveness of the CSCA mechanism, it
was removed and replaced with a CAI layer [19], denoted as "w/o

Table 2: Ablation study results. "↑" indicates the higher the
better, and "↓" indicates the lower the better. The best results
are marked in bold.

Method RMSE ↓ SSIM ↑ fMSE ↓ fSSIM ↑
w/o y 9.372 0.669 1027.164 0.811
w/o SP 8.994 0.726 783.271 0.893

w/o CSCA 6.532 0.873 390.661 0.923
Full 5.524 0.915 362.713 0.935

(a) Input (b) Our (c) GT

Figure 11: Failed cases. There are difficulties in generating
non-planar cast shadows.

CSCA". The results are not as good as the entire model, indicating
that CSCA can help generate more realistic images.

5.5 Discussion
Comparison on iHarmony4 [8] dataset. Figure 7 demonstrates
the applicability of our method in image harmonization task. It can
be observed that DucoNet [47] and CDTNet [7] do not effectively
transfer low-level illumination to the foreground, while our method
achieves the best results. Our method can bridge the lighting gap
between foreground objects and background environment, achiev-
ing lighting effects closer to ground truth (GT) images. It can also
preserve the structural information of foreground objects without
changing their structure and details.

Comparison on DESOBAv2 [29] and shadowAR [28]
dataset.We perturbed the foreground objects in the DESOBAv2.
Figure 10 demonstrates that our method can learn illumination
information in the background to generate harmonious foreground
objects and shadows for foreground objects. However, it is also
observed that the generated shadows are somewhat unrealistic in
few cases.

Limitations: As depicted in Figure 11, the proposed method has
been successfully applied to image harmonization and shadow gen-
eration tasks in various environments. However, our method faces
challenges in generating non-planar projection shadows. This is
because generating non-planar shadows requires more information,
such as object geometry and environmental depth information.

6 CONCLUSION
In this work, we have introduced a diffusion model-based method
to edit the lighting of foreground objects and generate visually
reasonable cast shadows as well as preserving the structure of the
image. In addition, we have proposed a large-scale high-quality
outdoor real-world dataset IH-SG for image harmonization and
shadow generation tasks. Our future work is to solve the generation
of non-planar cast shadows of foreground objects.
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