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Figure 1: We unify image harmonization and shadow generation into one model, adjusting foreground object to match the
background and generating appropriate shadows. The red rectangles highlight the foreground object.

ABSTRACT
Inserting foreground objects into specific background scenes and
eliminating the illumination inconsistency (eg., color, brightness)
between them is an important and challenging task. It typically
involves multiple processing tasks, such as image harmonization
and shadow generation. In these two domains, there are already
many mature solutions, but they often only focus on one of the
tasks. Recently, some image composition methods have utilized
diffusion models to address both of these issues simultaneously, but
they cannot guarantee complete reconstruction of the foreground
content. In this work, we propose CFDiffusion, which can simulta-
neously handle image harmonization and shadow generation. We
first employ a shadow mask predictor to estimate the shadow mask
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of the foreground object. Next, we design a harmonization-shadow
generator based on a diffusion model to harmonize the foreground
and generate shadows concurrently. Additionally, we propose a
foreground content enhancement module to ensure the complete
preservation of foreground content at the insertion location, and
we also develop an adaptive encoder to guide the harmonization
process in the foreground area. The experimental results on the
iHarmony4 dataset and the IH-SG dataset demonstrate the superi-
ority of our CFDiffusion approach.
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1 INTRODUCTION
Image composition stands as a fundamental task in computer vision
and augmented reality, aimed at seamlessly integrating objects from
one image into another to produce a convincingly realistic compos-
ite image. Merely inserting the foreground object into a background
image without careful consideration results in noticeable discrep-
ancies between the foreground and background, such as differences
in color, brightness, and shadows. Based on this, we can decompose
the image compositing process into dual subtasks, each addressing
specific issues: image harmonization [2, 3, 8, 9, 12, 24, 28, 53, 57]
and shadow generation [21, 33, 44, 49, 54, 61].

Image harmonization aims to adjust the compatibility between
the foreground and background in terms of color and brightness,
while shadow generation ensures that the inserted foreground ob-
jects cast realistic and reasonable shadows. Various practical meth-
ods exist for both of these subtasks. However, employing multiple
models to address each subproblem individually is both cumber-
some and impractical. What we need is a unified network that can
address both of these issues simultaneously, achieving excellent
results for each. Figure 1 illustrates the problems we need to deal
with and the results we should achieve.

In recent years, generative models such as GANs [4, 23, 25, 48]
and diffusion models [1, 20, 35, 39, 41, 44, 45] have demonstrated
significant potential in image composition. Particularly, diffusion
models have surpassed various preceding methods in image editing
[1, 27, 39] and other applications [19, 38, 42]. Conditional diffusion
model aims to generate images under the guidance of conditional
information, such as text or semantic masks. Among them, Stable
Diffusion (SD) [44] stands out as one of the most popular models,
successfully integrating text from CLIP [43] into latent diffusion.

Some existing works have introduced the diffusion model into
related research domains, particularly in image editing and image
composition. For example, SDEdit [39] composites images by adding
noise to the input image and then iteratively denoises it through sto-
chastic differential equations. However, these methods lacks proper
and sufficient guidance during the denoising process, resulting in
the final image lacking sufficient content fedelity. Besides, most
diffusion models for image editing focus on manipulating images
using text input, which is inappropriate for image composition.

Recently, some image compositing methods [51, 58] have at-
tempted to address these issues within a unified model, which can
significantly simplify both model size and complexity. For exam-
ple, ObjectStitch [51] utilizes a bounding box that encompasses
the foreground object to specify the region for foreground object
insertion and shadow generation, then processes the foreground
within this designated area. Given the recent successful applications
of diffusion models in image processing, these methods typically
rely on pretrained diffusion models. However, in practice, these
methods result in uncontrollable adjustments to the foreground in
terms of both position and content texture, raising concerns about
preserving the fidelity and credibility of the foreground object.

In this paper, our aim is to address the issue of inadequate fore-
ground fidelity observed in previous discussions on image com-
position. We introduce a method called CFDiffusion that concur-
rently handles image harmonization and shadow generation tasks.
Building upon stable diffusion, we introduce a foreground content

enhancement module (FCEM), which utilizes a foreground content
encoder to extract foreground content information, thus guiding
the reconstruction of foreground content. Furthermore, we equip
SD with a lightweight adaptive encoder designed to extract cru-
cial conditional information from the composite image, such as
background style and color, to guide the denoising process of SD.

To validate the effectiveness of our approach, we compare it with
state-of-the-art methods and conduct experiments on benchmark
datasets such as iHarmony4 [10] and the IH-SG dataset. The experi-
mental results demonstrate that our method achieves more realistic
image harmonization and produces shadows that are both genuine
and believable.

Our contributions can be summarized as follows:
• We introduce a novel image composition method called CFD-
iffusion. This method simultaneously handles image harmo-
nization and shadow generation tasks for foreground objects
with masked insertion points.

• We design a foreground content enhancement module to
fully reconstruct the foreground content and texture details.

Extensive experiments conducted on both public datasets and
the IH-SG dataset [62], validate the effectiveness of our proposed
method.

2 RELATEDWORK
2.1 Image Harmonization
As a subtask of image compositing, the objective of image harmo-
nization is to integrate objects from a given foreground image into
a background image to create a cohesive composite image. This
process involves adjusting the color and lighting information of the
foreground object to ensure its compatibility with the background
of the composite image.

Traditional methods [31, 52] rely on adjusting the appearance
of the foreground to match the color statistics of the background,
typically focusing on obtaining color statistics and then transfer-
ring this information between the foreground and background.
These methods are fast and straightforward but often struggle
with complex scenes and produce artifacts because the realism of
the image is often not well captured by these statistics. Particu-
larly, with the release of the first large-scale image harmonization
dataset, iHarmony4 [10], supervised image harmonization meth-
ods [7, 11, 13, 14, 16, 32] have garnered increasing attention. For
instance, Hao et al. [14] employed attention blocks to compute
non-local information for foreground adjustment. SSAM [11] in-
tegrates them using a dual-path attention model, focusing on the
relationship between spliced and unspliced regions. DoveNet [10]
treats image harmonization as a domain translation task. CDT-Net
[9] combines pixel-to-pixel and RGB-to-RGB transformations for
high-resolution image harmonization. Ling et al. [32] introduced
the concept of style from the background image, treating the har-
monization task as a style transfer problem. They first introduced
the concept of background image style and proposed a new region-
aware adaptive instance normalization (RAIN) method, which can
extract style information such as hue hidden in background fea-
tures and adaptively transfer it to the foreground area. Hang et
al. [17] proposed a background attention adaptive instance nor-
malization (BAIN) based on RAIN to achieve attention-weighted
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Figure 2: Overview of our CFDiffusion. It consists of two stages: foreground object shadow mask prediction stage and shadow-
harmonization generation stage. 𝐸𝑓 and 𝐸𝑏 respectively represent the foreground encoder and background encoder of the
foreground object shadow mask generator.

background feature distribution according to the feature similarity
of foreground and background. However, when the task extends to
shadow generation, these methods do not scale well to handle both
tasks simultaneously.

2.2 Shadow Generation
Previous work on shadow generation can be categorized into two
main approaches: rendering-based methods and image-to-image
translation methods.

Rendering-based methods [26, 29] relies on a clear understand-
ing of lighting, reflectance, material properties, and scene geometry
to generate shadows for inserted virtual objects using rendering
techniques. However, such knowledge is often unavailable or im-
practical for applications in real-world scenarios. Image-to-image
translation methods predominantly employ deep learning tech-
niques, characterized by encoder-decoder architectures. By training
on paired images, including images with shadows and those with-
out, these methods directly learn the mapping from shadow-free
images to shadowed images from the input data. Importantly, this
approach typically eliminates the need for explicit knowledge about
lighting, reflectance, material properties, and scene geometry. AR-
ShadowGAN [33] introduces an attention-guided network capable
of directly modeling the mapping relationship between the shadows
of foreground objects and their corresponding real environments,
accompanied by the release of the Shadow-AR dataset. SGRNet
[21] promotes comprehensive information interaction between the
foreground and background. It initially predicts a mask for shadow
regions and subsequently forecasts shadow parameters to fill these
regions. Additionally, a new shadow training dataset, DESOBA, was
introduced. ShadowGAN [61] combines both global conditional dis-
criminators and local conditional discriminators to generate shad-
ows for inserted 3D foreground objects without relying on back-
ground lighting information. In addition, some shadow removal
methods and shadow detection methods [6] can also give us reverse

inspiration on shadow generation, such as Mask-ShadowGAN [22],
and CANet [5]. Unlike the approach in this paper, which involves
filling shadow regions, Zhou et al. [62] proposed a coarse shadow
prediction module to generate coarse shadows and use them as
prior knowledge to guide the generation of the diffusion model.
Shadow generation is associated with the foreground objects, but
it targets different aspects than image harmonization. We aim to
combine both aspects using a single network framework.

3 PROPOSED METHOD
Given a composite image 𝐼𝑐 , a binary mask 𝑀𝑏𝑠 representing the
background object-shadow pair, and a binary mask𝑀𝑓 indicating
the foreground object, our goal is to obtain an image �̃� that harmo-
nizes the foreground object and produces reliable shadows under
background illumination conditions.

As illustrated in Figure 2, Our method consists of two stages: the
foreground object shadow mask prediction stage, foreground har-
monization and shadow generation stage. It mainly comprises five
components: foreground object shadow generator𝐺 𝑓 𝑠 , foreground
content encoder 𝐸 (·), adaptive encoder 𝐸𝑎 , foreground content en-
hancement module 𝐹𝐶𝐸𝑀 , and shadow-harmonization generator
𝐺 (·) based on a stable diffusion model.

The network workflow is as follows: Firstly, we use the back-
ground object-shadow data pair as reference to predict the shadow
mask of the foreground object, identifying the approximate location
for shadow generation. Then, we input the synthesized image into
the shadow-harmonization generator to produce the final result.
Simultaneously, we use the foreground content encoder to extract
the foreground content embedding, inputting it into the foreground
content enhancementmodule to constrain and complete foreground
texture details. The adaptive encoder transfers the background style
to the foreground region, providing additional generation guidance
for the harmonization-shadow generator.
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Figure 3: The display of two six-tuples of the IH-SG dataset [62], from left to right: ground truth, composite image, foreground
object mask, shadow mask of foreground object, background object mask, shadow mask of the background object. The
foreground and background are captured separately under different lighting environments, paying attention to collecting
various scenes, ground surfaces, and shadow casting situations.

Figure 4: Overview of Cross-Attention Integration (Cross-
Attention Integration) layer [21]. The 𝑔, 𝑓 , ℎ, 𝑣 shown in the
figure represent 1 × 1 convolution, ⊗ represents matrix mul-
tiplication, C○ represents concatenate.

3.1 Harmonization-Shadow Generator
Recently, diffusion models have shown remarkable performance in
many fields: image generation [20, 50], text-to-image generation
[44], image translation [30], image inpainting [37, 46], and image
editing [15, 39]. The backbone of our Harmony-Shadow Generator
is built upon Stable Diffusion (SD) model [44].

SD is a latent diffusion model that undergoes a two-stage pre-
training process, involving an autoencoder and a denoising U-Net
[20]. In the first stage, the SD model trains an autoencoder: the
encoder E converts the images 𝐼 into a latent representation 𝑧′0 =

E(𝐼 ), and then the decoder D reconstructs the images, resulting in
𝐼 = D(𝑧′0). In the second stage, the autoencoder’s parameters are
fixed, and SD introduces noise to the latent space representation 𝑧′0
over 𝑇 steps to generate 𝑧′𝑡 . This process involves the creation of a
denoising U-Net 𝜖𝜃 , which is trained using a latent denoising loss

L𝐿𝐷𝑀 : =E𝑧′0,𝑦,𝜖 N(0,1),𝑡 [∥ 𝜖 − 𝜖𝜃1 (𝑧
′
𝑡 , 𝑡, 𝜏𝜃2 (𝑦)) ∥

2
2], (1)

here 𝜖 is the noise added to the latent space feature 𝑧′0 at each
noise step, 𝜖𝜃1 is the denoising U-Net that predicts the noise 𝜖 at

the current step 𝑡 , and y represents additional conditions (e.g. text,
mask, etc.), 𝜏𝜃2 is instead a domain-specific encoder that projects y
to an intermediate representation. In this work, we add conditional
information using an adaptive encoder similar to that of composite
images with foreground masks. During the inference process, noise
is first added to 𝑧′0 to generate 𝑧′

𝑇
, and then 𝑧′

𝑇
is used as 𝑧

𝑇
, which

is the initial input of 𝜖𝜃1 . Then we iteratively use 𝜖𝜃1 to estimate the
noise at each denoising step 𝑡 , thereby gradually refining the latent
map 𝑧

𝑇
, and ultimately become a clean latent feature 𝑧0. Finally,

the clean latent features 𝑧0 are fed to the decoder D to generate
images.

3.2 Foreground shadow mask generator
Inspired by Hong et al. [21], we apply a shadow mask predictor
to generate foreground object shadow mask. First, we predict the
foreground shadow mask 𝑀𝑓 𝑠 through the foreground shadow
mask generator 𝐺𝑠 . 𝐺𝑠 consists of an encoder 𝐸 and a decoder 𝐷 ,
and the encoder is divided into a foreground encoder 𝐸𝑓 and a
background encoder 𝐸𝑏 . We believe that the background object-
shadow pair contains clues that are beneficial for inferring the
foreground shadow area. In order to generate the shadow mask of
the foreground object, we take the concatenation of the composite
image 𝐼𝑐 and the background object-shadow mask𝑀𝑏𝑠 as the input
of the background encoder 𝐸𝑏 , and generate the background feature
map𝑋𝑏 . At the same time, the concatenation of the composite image
𝐼𝑐 and the foreground object mask 𝑀𝑓 is used as the input of the
foreground encoder 𝐸𝑓 to obtain the foreground feature map 𝑋𝑓 .
The process is summarized as follows:

𝑋𝑏 = 𝐸𝑏 (𝑀𝑏𝑠 , 𝐼𝑐 ) , (2)

𝑋𝑓 = 𝐸𝑓

(
𝑀𝑓 , 𝐼𝑐

)
. (3)

Following Hong et al. [21], we use a Cross-Attention Integration
(CAI) [21, 55, 56, 60] layer to help the foreground feature map notice
the relevant lighting information of the background feature map.
As the Figure 4 shows, the input of the CAI layer consists of𝑋𝑓 and
𝑋𝑏 , which are outputs of foreground encoder 𝐸𝑓 and a background
encoder 𝐸𝑏 , and the output feature map is denoted as 𝑋 . Then 𝑋 is
fed into the decoder 𝐷 to obtain the mask of the foreground object
shadow. Subsequently, we add it to the foreground object mask𝑀𝑓

to obtain the foreground object-shadow mask𝑀𝑓 𝑠 , which serves
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Figure 5: Overview of FCEMmodule. A in the figure is the at-
tentionmap output by the cross attention part. 𝐹𝑖 ∈ Rℎ𝑖×𝑤𝑖×𝑐𝑖

is feature map of i-th transformer block

as one of the inputs for the subsequent shadow-harmonization
generator. The process is summarized as follows:

𝑀𝑓 𝑠 = 𝐷 (𝑋 ) +𝑀𝑓 . (4)

3.3 Foreground Encoder
Following Zhang et al. [59], in order to further enhance the detailed
texture of the foreground generation, we employ the pre-trained
model𝑉𝑖𝑇 − 𝐿/14 from CLIP [43] as the foreground image encoder
𝐸. Initially, we extract the foreground object region from the syn-
thesized image 𝐼𝑐 using the foreground object mask𝑀𝑓 ,which is
then inputted into the foreground image encoder 𝐸 to extract the
local content embedding of the foreground 𝐸𝑙 . This process can be
represented as follows:

𝐸𝑙 = 𝐸 (𝐼𝑓 ). (5)

The intermediate layer of the CLIP encoder outputs 256 patch tokens
containing local details. We extract the information of these patch
tokens and integrate these foreground content embeddings into
the Foreground Content Enhancement Module of the denoising U-
Net model to help us control the generation of foreground content
details. The specific details of the FCEMmodule is located in Section
3.4.

3.4 Foreground Content Enhancement Module
Following Zhang et al. [59], we utilize a foreground content en-
hancement module to embed foreground content into the inter-
mediate features of the diffusion model, thereby constraining the
stable diffusion model for foreground appearance generation and
promoting the composite generation of foreground appearance
with high fidelity.

Our foreground content enhancement module is built upon the
publicly released v1-4 SD model. To identify foreground regions
that need to be constrained, we append the binary foreground

object-shadow mask𝑀𝑓 𝑠 to the model input. To achieve this, in the
first convolutional layer of U-Net, we attach two additional input
channels to respectively contain the foreground object mask𝑀𝑓 𝑠

and the predicted foreground object-shadow mask𝑀𝑓 𝑠 . Eventually,
the input images are uniformly resized to the resolution of 256×256 .

Denoising U-Net of SD consists of a series of basic blocks, each
block includes a residual block and a transformer block. The trans-
former block consists of a self-attention module, a cross-attention
module, and a feedforward network.

As illustrated in Figure 5. We record the features from the 𝑖 − 𝑡ℎ

transformer block as 𝐹𝑖 ∈ Rℎ𝑖×𝑤𝑖×𝑐𝑖 , where ℎ𝑖 ,𝑤𝑖 , 𝑐𝑖 represent
its height, width, and channel dimensions respectively. We first
use the foreground local feature 𝐹 𝑙

𝑖
intercepted by the foreground

object mask 𝑀𝑓 resized to ℎ𝑖 ,𝑤𝑖 , 𝑐𝑖 . The feature map is flattened
to 𝐹 𝑙

𝑖
∈ R𝑁×𝑐𝑖 , and passed through cross attention together with

the foreground local embedding 𝐸𝑙 , then we get an attention map
𝐴 and refined foreground local feature map 𝐹 𝑙

𝑖
. Then we align

the foreground local embedding 𝐸𝑙 with 𝐹 𝑙
𝑖
to obtain the aligned

foreground embedding map 𝐸𝑙 . Further we use 𝐸𝑙 to modulate 𝐹 𝑙
𝑖
. 𝐸𝑙

is passed through a convolutional layer of 3× 3 to obtain the spatial
awareness modulation weight, and the modulation is normalized.
The transformed 𝐹 𝑙

𝑖
is as follows:

𝐹 𝑙𝑖 = 𝑛𝑜𝑟𝑚(𝐹 𝑙𝑖 ) • 𝑐𝑜𝑛𝑣 (𝐸𝑙 ). (6)

Finally, after resizing 𝐹 𝑙
𝑖
, it is added to the foreground object region

of 𝐹𝑖 . The output of the Foreground Content Enhancement Mod-
ule (FCEM) is then delivered as the enhanced foreground content
features 𝐹

𝑖
to the next residual block.

3.5 Adaptive Encoder
Following Lu et al. [36] and Mou et al. [40], we adopt an adaptive
encoder, which is a lightweight model that can align the internal
knowledge in the SD model with external control signals. Through
this adaptive encoder, we can achieve rich control effects on the
color and structure of the SD generation results.

The adaptive encoder takes into account encoding additional
conditions and provides multi-step guidance for denoising U-Net
in the denoising step. Previous adaptive encoder implementations
focus more on coarse structures (e.g., sketches, poses, semantic
masks) and exploit textual conditions to indicate additional require-
ments (e.g., style or context). Different from previous work, we
abandon the text CLIP model, splice the composite image 𝐼𝑐 and the
foreground mask 𝑀𝑓 , and use a lightweight adaptive encoder to
encode while retaining content details and extracting background
styles. The structure of the adaptive encoder includes four feature
extraction blocks and three DownSample (DS) blocks.

First, the input image is resized to 64 × 64, and we name it 𝐹 0
𝑐 .

Each feature extraction module (EM) includes a convolutional layer
and two residual blocks. The generation process of 𝐹 𝑖𝑐 , 𝑖 ∈ 1, 2, 3, 4
can be expressed as follows:

𝐹 1
𝑐 = 𝐸𝑀1

(
𝐹 0
𝑐

)
, (7)

𝐹 𝑖𝑐 = 𝐸𝑀𝑖

(
𝐷𝑆 (𝐹 𝑖−1

𝑐 )
)
. (8)
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6: Experimental results on the IH-SG dataset. (a) is the input composite image, (h) is the GT. From (b) to (g), they are the
generated results of SGDiffusion [34], ARShadowGAN [33], ObjectStitch [51], DucoNet [53], DIH-GAN [3], and our proposed
method, respectively.

The resolutions of 𝐹 1
𝑐 , 𝐹

2
𝑐 , 𝐹

3
𝑐 , and 𝐹 4

𝑐 are 64×64, 32×32, 16×16, 8×8
respectively. Then we use foreground mask 𝑀𝑓 to separate the
foreground features 𝐹 𝑖

𝑐,𝑓
and background features 𝐹 𝑖

𝑐,𝑏
:

𝐹 𝑖
𝑐,𝑓

= 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐹 𝑖𝑐 ◦𝑀𝑓 ), (9)

𝐹 𝑖
𝑐,𝑏

= 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐹 𝑖𝑐 (1 −𝑀𝑓 )) . (10)

Among them,𝑀𝑓 represents the foreground object mask scaled to
the corresponding size of 𝐹 𝑖𝑐 , ◦ represents element-wise product,
and 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(·) represents expanding a 2D feature map into a 1D
feature feature sequence.

We use a transformer layer to extract and transfer the style of
the background to the foreground area to achieve harmonious pro-
cessing of the foreground. In addition, the parts of the background
area that are related to the foreground can provide more references
when harmonizing the foreground, so they are very important. We
will also pay more attention to the areas that are more related to the
background and foreground. 𝐹 𝑖

𝑐,𝑓
is used as query, 𝐹 𝑖

𝑐,𝑏
is used as

keys/values, and the final background stylized foreground feature
𝐹 𝑖
𝑐,𝑓

can be expressed as:

𝐹 𝑖
𝑐,𝑓

= 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (𝐹 𝑖
𝑐,𝑓

, 𝐹 𝑖
𝑐,𝑏

, 𝐹 𝑖
𝑐,𝑏

) . (11)

3.6 Traning Losses and Details
Our total loss function 𝐿𝑡𝑜𝑡𝑎𝑙 consists of the standard noise loss
L𝐿𝐷𝑀 of the diffusion model and a reconstruction loss 𝐿𝑟𝑒𝑐 . There-
fore, the final loss function of our CFDiffusion is:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑟𝑒𝑐 + 𝜆2L𝐿𝐷𝑀 + 𝜆3𝐿𝑓 𝑠 , (12)

where 𝜆1, 𝜆2,𝜆3 are hyper-parameters which control the influence
of each term.

Noise Loss. First, we adopt the standard noise loss of the diffu-
sion model, aiming to reconstruct the image features in the latent

space:

L𝐿𝐷𝑀 : =E𝑧′0,𝑦,𝜖 N(0,1),𝑡 [∥ 𝜖 − 𝜖𝜃1 (𝑧
′
𝑡 , 𝑡, 𝜏𝜃2 (𝑦)) ∥

2
2] . (13)

Reconstruction loss. It is a classical 𝐿1 loss between the generator
output image 𝐼 and real ground-truth image 𝐼 , to further constrain
the generated image towards the ground truth, which is expressed
as:

𝐿𝑟𝑒𝑐 =∥ �̃� − 𝐼 ∥1 . (14)

MSE Loss. Additionally, we compute the loss for the foreground
mask prediction module using the following method:

𝐿𝑓 𝑠 =∥ 𝑀𝑓 𝑠 −𝑀𝑓 𝑠 ∥2
2 . (15)

4 EXPERIMENTS
To verify the superiority of our proposed CFDiffusion, we compare
CFDiffusion with state-of-the-arts on the real-world iHarmony4
[10] dataset and IH-SG dataset [62], and provide assessments both
quantitatively and qualitatively.

4.1 Experimental Settings
The proposed method is implemented using PyTorch, which is
trained using one NVIDIA RTX 3090 GPU. All images are resized to
256 × 256 for training and testing. We adopt adam optimizer with
the momentum as (0.9,0.999), and the learning rate initialized as
0.00003. Following [47], we use the Kaiming initialization technique
[18] to initialize the weights of the proposed model and use a 0.9999
Exponetial Moving Average (EMA) for all our experiments. We use
1000 diffusion steps T and noise schedule 𝛽𝑡 linearly increasing
from 0.0001 to 0.002 for training, and 25 steps for inference. After a
few trials, we set 𝜆2 = 𝜆3 = 10, 𝜆1 = 1 by observing the grenerated
images. The training epoch is set as 1500.
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(a) (b) (c) (d) (e) (f)

Figure 7: The visual results of harmonization experiments on iHarmony4 [10]. (a) represents the input image, (f) is the ground
truth (GT), and (b) to (e) show the generated results from CDT-Net [9], Harmonizer [28], DucoNet [53], and our method,
respectively. It can be seen that our results are closest to the Ground Truth.

Table 1: Results of quantitative comparison on IH-SG dataset.
"↑" indicates the higher the better, and "↓" indicates the lower
the better. The best results are marked in bold.

Method RMSE ↓ SSIM ↑ fMSE ↓ fSSIM ↑
SGDiffusion [34] 8.591 0.825 875.882 0.809

ARShadowGAN [33] 9.164 0.817 942.154 0.816
ObjectStitch [51] 9.357 0.773 1145.116 0.773
DucoNet [53] 7.346 0.861 454.213 0.915
DIH-GAN [3] 6.145 0.847 567.311 0.894

Ours 5.582 0.917 367.919 0.937

Table 2: Results of quantitative comparison on iHarmony4.

Method RMSE ↓ SSIM ↑ fMSE ↓ fSSIM ↑
CDT-Net [9] 6.847 0.804 379.187 0.858

Harmonizer [28] 6.308 0.854 410.847 0.821
DucoNet [53] 6.152 0.876 365.236 0.915

Ours 5.582 0.917 367.919 0.937

Table 3: Ablation study of FCEM and adaptive encoder.

Method RMSE ↓ SSIM ↑ fMSE ↓ fSSIM ↑
baseline 11.192 0.687 543.417 0.675

w/o FCEM 7.264 0.746 398.542 0.785
w/o adaptive encoder 8.437 0.727 485.534 0.841

Ours 5.582 0.917 367.919 0.937

Compared methods.We compared our model with five deep
learning-based methods from the related fields: two image har-
monization methods including DucoNet [53], DIH-GAN [3], three
shadow generation methods include ARShadowGAN [33], SGDif-
fusion [34], and ObjectStitch [51]. Among them, SGDiffusion is the

latest method using a diffusion model for shadow generation tasks,
while ObjectStitch is the latest image composition method that
addresses both image harmonization and shadow generation tasks.
DucoNet works on image harmonization based on dual color spaces.
ARShadowGAN makes full use of the background information to
guide the shadow generation of foreground objects. We train and
test all these methods based on the IH-SG dataset [62].

In addition, we also tested our image harmonization capabilities
on the iHarmony4 dataset, and compared the three image harmo-
nization methods of CDT-Net [9], Harmonizer [28] and DucoNet
[53] to further prove the superiority of our CFDiffusion. CDT-Net
coherently combines pixel-to-pixel conversion and RGB-to-RGB
conversion in an end-to-end network.

Evaluation metrics. We use four metrics to evaluate the im-
age illumination harmonization results, which are Relative Mean
Square Error (RMSE), Structural Similarity Index Measure (SSIM),
foreground Mean Square Error (fMSE), foreground Structural Sim-
ilarity Index Measure (fSSIM). Generally, the smaller RMSE and
fMSE, and the larger fSSIM and SSIM indicate the better image
illumination harmonization results.

IH-SG Dataset. To better train our model, we used the IH-SG
dataset [62] that can address both of image harmonization and
shadow generation concurrently. In total, the dataset comprises
over 1000 outdoor scenes and more than 10000 six-tuples. Zhou
et al. [62] also captured numerous shadow scenes under complex
conditions, such as shadows casting on walls and steps, to enrich
the shadow data samples, making the dataset more realistic and
diverse. Two six-tuples are illustrated in the Figure 3.

4.2 Comparison with State-of-the-Arts
Experiments on IH-SG dataset. The visualization results of dif-
ferent methods on the testing set are shown in Figure 6, and the
quantitative comparison results are summarized in Table 1. Ap-
parently, our method CFDiffusion achieves the better quantitative
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results than other state-of-the-art methods on all four metrics. This
is primarily due to the powerful image generation capability of
the diffusion model and the effective utilization of foreground and
background information by our FCEM and adaptive encoder.

Experiments on iHarmony4. The iHarmony4 dataset is one
of the most popular large-scale datasets in the field of image harmo-
nization. Therefore, we compared our method with several image
harmonization methods on the iHarmony4 dataset, and the quanti-
tative comparison results are shown in Table 2, visualization results
are shown in Figure 7. Our proposed approach also achieves the
best results.

Experiments on DESOBAv2. Recently, Liu et al. [34] extended
the DESOBA dataset [21] to DESOBAv2, which has become the
latest shadow generation dataset. To validate the generalization
ability of our model, we conducted experiments on the DESOBAv2
dataset by applying slight perturbations to foreground objects, and
the results are shown in Figure 8.

4.3 Ablation Study
In order to verify the effectiveness of each component of our
method, we conduct ablation studies by modifying the CFDiffusion
architecture. Specifically, we set the following variants:

To verify the crucial roles played by our FCEMmodule and adap-
tive encoder module in the overall model, we set up several variants.
Firstly, we chose the original diffusion model as the baseline, which
is referred to as "baseline" in Table 3. To demonstrate the pivotal
roles of the FCEM module and adaptive encoder module in the
entire model, we remove these two modules separately from the
complete model, which are referred to as "w/o FCEM" and "w/o
adaptive encoder" in Table 3. Finally, we compare these variants
with the full model "Ours (full model)" for comprehensive analysis,
and some results are shown in Figure 9.

We train these variants using the same training data and quanti-
tatively evaluated their impact on the test results. The evaluation
results are presented in Table 3. From the table, we can observe
that: after introducing guided supervision with FCEM, the model’s
quantitative performance has made significant strides, sufficiently
demonstrating the strong guiding role of the FCEM module in cap-
turing texture details of foreground objects. Moreover, with the
inclusion of the adaptive encoder, the model’s performance has
also noticeably improved compared to the original diffusion model,
confirming its guiding role in the harmonization generation of
foreground objects.

With the simultaneous introduction of both the FCEM and adap-
tive encoder modules, our full model achieves the best performance,
demonstrating the effectiveness of our approach. Additionally, in-
corporating the FCEM and adaptive encoder modules into the orig-
inal diffusion model significantly improves performance.

4.4 Limitations
As shown in Figure 10, our model fails to effectively generate shad-
ows in scenarios lacking background object references. During the
foreground shadow mask prediction stage, we only use the fore-
ground encoder module without referring to background shadow
information. As a result, the inferred shadow shapes significantly
deviate from the ground truth.

(a) input (b) results (c) GT

Figure 8: The experimental results on DESOBAv2 dataset.

(a) (b) (c) (d) (e) (f)

Figure 9: Ablation study results. From (a) to (f), they are
respectively the composite images, baseline method, w/o
FCEM, w/o adaptive encoder, our complete method, and GT.

(a) (b) (c)

Figure 10: Failed example. From (a) to (c) are the input, gen-
erated results, and GT, respectively.

5 CONCLUSION AND FUTUREWORK
We have presented an image compositing method using diffusion
models to resolve illumination inconsistencies between foreground
and background while generating realistic shadows. Our approach
employs an adaptive encoder for background style extraction and
the FCEM module to better preserve foreground details. Extensive
comparison and ablation experiments validate the effectiveness of
CFDiffusion. Future work will focus on extending our CFDiffusion
to real-time video lighting harmonization and shadow generation.
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