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Abstract

The Who-What-Where (3W) composite-semantics video Instance
Search (INS) task aims to find video shots about a person doing an
action in a location. The state-of-the-art (SOTA) methods decom-
pose 3W INS into three 2W INS, i.e., who-what, what-where and
where-who semantic correlation modeling, and directly multiply
three 2W INS results to produce the final 3W INS result. Obviously,
overlapping semantics exist among the above 2Ws, e.g., who-what
and what-where share the action component. The semantic overlap
indicates that the 2Ws are mutually interdependent rather than
independent. According to probability theory, the product of in-
terdependent variables cannot be directly multiplied to obtain an
accurate result, and such a direct product would yield a suboptimal
outcome. This interdependence exerts diverse influences on the 3W
INS results. For instance, fusing two 2W INS results “Dr. Kelleher-
provide medical guidance” and “provide medical guidance-in the
hospital”, “provide medical guidance” is a pivotal connection, of
positively enhancing the rationality of both person and location.
Conversely, while both “Ross-lifts heavy objects” and “lift heavy
objects-Ross” are individually coherent, combining them by over-
lapping the shared element “Ross” creates a conflict between the
hazardous setting and strenuous labor, ultimately undermining
the overall plausibility. Inspired by quantum interference theory,
we propose a Quantum Interference Partial Decomposition (QIPD)
method to model the diverse influences of semantic overlap from
2W to 3W INS. Specifically, QIPD incorporates two core modules,
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i.e., semantic interference and temporal interference. The former
derives the 3W amplitude by converting 2W samples into ampli-
tudes and phases and performing interference, while the latter sets
the current shot’s phase as baseline, amplifying the influence of
adjacent shots while attenuating distant shots. Extensive evalua-
tions on three large-scale 3W INS datasets demonstrate that QIPD
outperforms SOTA baselines.
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1 INTRODUCTION

The Who-What-Where (3W) composite-semantics Video Instance
Search (INS) task, also known as Person-Action-Location (PAL)
INS, represents a challenging problem in the field of computer
vision. This task requires retrieving video shots containing spe-
cific combinations of three semantic elements, i.e., a target person
(who) performing a distinctive action (what) in a particular loca-
tion (where). For instance, Figure 1(a) illustrates a 3W INS example
where Ian (who) holds a phone (what) in cafel (where). These ele-
ments form fundamental storytelling units [32], making PAL INS
not only contributes to comprehensive video understanding [26],
but also an enabling technology for downstream applications such
as video question answering [41].

Current 3W INS approaches can be broadly categorized into,
i.e., Complete-Decomposition (CD), Non-Decomposition (ND), as
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Figure 1: Different methods for 3W INS task.

well as Partial-Decomposition (PD) methods. The CD methods (Fig-
ure 1(b)) [20, 27, 31] assume semantic independence, decomposing
the 3W INS task into three isolated single-semantic retrieval tasks,
i.e., Who, What and Where. While efficient, they ignore crucial
inter-semantic correlations, limiting retrieval accuracy. The ND
methods (Figure 1(c)) [21, 24, 38] treat the 3W composite-semantics
as an indivisible whole, leveraging Vision Language Models (VLMs)
for end-to-end video-text matching. However, they often fail to
capture fine-grained semantic distinctions, particularly for rare or
composite concepts. PD methods (Figure 1(d)) [16, 17, 34] strike a
balance by decomposing 3W INS into three pairwise 2W INS tasks,
i.e., Who-What, What-Where and Where-Who, and aggregate re-
sults via product fusion.

Yet, they overlook a critical flaw: semantic overlap among 2Ws.
For instance, Who-What and What-Where share the What (action)
component. From a probability theory perspective, since these com-
ponents are not independent, simply multiplying them would yield
suboptimal results [1]. The semantic overlap issue can affect the
final semantics in multiple ways, with both positive and negative
influences. As shown in Figure 2(a), when fusing the two 2W INS
results “Dr. kelleher-provide medical advice” and “provide medical
advice-in the hospital”, the overlapping action semantics of “pro-
vide medical advice” enhances the credibility of both “Dr. kelleher”
and “in the hospital”, since this action typically occurs in hospitals
and is performed by doctors. Conversely, Figure 2(b) demonstrates
a negative case: of mixing “lift heavy objects-Ross” and “Ross-on a
ladder”. While these two 2W INS results are individually plausible,
fusing them via the overlapping person semantics “Ross” introduces
a credibility conflict between the strenuous labor (lift heavy objects)
and hazardous setting (on a ladder), ultimately undermining relia-
bility. Therefore, simple multiplicative fusion fails to an accurate
3W INS result when combining three 2WS into 3W. It is necessary
to develop a fusion method that can model these diverse influences
of semantic overlap.

Quantum interference [13] provides a natural mechanism for
diverse multiple influences of overlapping components. When wave-
functions superimpose, their relative phases determine the interfer-
ence pattern. In particularly, in-phase superposition leads to con-
structive interference (amplitude enhancement), while anti-phase
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Figure 2: Positive and negative influence about semantic over-
lap in story videos.

superposition causes destructive interference (amplitude suppres-
sion). Motivated by this mechanism, we employ quantum interfer-
ence to address the semantic overlap when fusing 2W INS results
(Figure 1(d)), where overlapping semantic reinforce or weaken each
other through interference. Additionally, considering the varying
impacts of shots with different time differences from the current
shot, we address this by assigning these shots different phases.

Specifically, we propose a Quantum Interference Partial Decom-
position (QIPD) method for 3W INS. Initially, three types of 2W INS
results (Who-What, What-Where, and Where-Who) are extracted
from the story videos using the PD method [17]. These results
are then processed in the semantic interference module, where
they are transformed into amplitude and phase representations and
fused through quantum interference to compute the 3W amplitude.
Next, the temporal interference module modulates the influence of
neighboring shots by assigning large phase differences to distant
shots (reducing their impact) and small phase differences to proxi-
mate shots (enhancing their correlation). Finally, the final 3W INS
results are obtained by combining the amplitude and phase repre-
sentations of all shots through quantum interference, effectively
modeling both semantic correlation and temporal proximity.

In summary, the contributions of this paper include:

e We discover the semantic overlap between the 2Ws, analyze
its potential diverse influences, and address this issue using
quantum interference theory.

e We propose a comprehensive Quantum Interference Partial
Decomposition network featuring: (1) a semantic interfer-
ence module that dynamically handles overlapping semantics
through quantum interference, and (2) a temporal interfer-
ence module that adaptively weights shot relevance based on
temporal proximity.

o Extensive evaluations on 3 public datasets demonstrate the
effectiveness and superiority of the proposed QIPD compared
to competitive baseline methods.
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2 RELATED WORK
2.1 Composite-Semantics Video INS

Composite-semantics video INS task aims to recognize video shots
containing specific composite-semantics, enabling structured se-
mantic retrieval of composite-semantics in videos [17]. Existing
approaches for composite-semantics video INS can be broadly cate-
gorized into three paradigms: CD, ND and PD methods. CD meth-
ods [20, 27, 31] assume that composite semantics in the query are
mutually independent, thus divide a complex composite-semantics
INS problem into multiple single-semantics INS problems [19, 42],
ignoring necessary semantic correlations in story videos. ND meth-
ods [21, 24, 38] treat composite semantics as an indivisible unit, a
paradigm commonly adopted in natural language processing [2, 44].
However, such approaches often face challenges in precise action
recognition due to their reliance on generic visual feature repre-
sentations. PD method [17, 34] offers a strategic advancement by
explicitly modeling the correlations among composite semantics
in a pairwise division, but they often yield suboptimal results due
to overlooked semantic overlaps between the decomposed compo-
nents. Our proposed QIPD method addresses this issue by modeling
semantic overlaps using quantum interference theory.

2.2 Quantum Interference in Multimedia

Quantum theories encompassing quantum interference theory has
recently achieved remarkable progress in multimodal domains [15,
25, 40]. Quantum interference, through constructive interference
and destructive interference, effectively models both the positive
and negative effects within overlapping semantic components. Due
to this unique capability, quantum interference has demonstrated
significant advantages in fields like humor detection [36] and senti-
ment classification [35, 46], while also proving effective in sarcasm
anaysis [29, 37]. Despite its demonstrated success in these domains,
quantum interference remains underexplored for 3W INS tasks.

3 METHOD

Our framework begins by establishing the theoretical foundation
of quantum interference. We then formally define the 3W-INS prob-
lem, introducing key notations for semantic components and their
interactions. The system first processes raw video inputs to extract
three distinct 2W instance search results, each producing semantic
amplitude outputs. These amplitudes subsequently undergo seman-
tic interference modeling. Finally, temporal interference modulation
is applied, generating the optimized 3W-INS results.

3.1 Preliminary
In quantum mechanics, wave ¥ is completely described by a com-
plex value:

Y = pe’? )
where p are real amplitudes and 6 are phases.

The probability of the wave follows the Born rule, which states
that the probability P equals the squared of its amplitude:

P=p’ ()

Quantum interference stems from the superposition principle in
quantum mechanics. When two coherent waves i = p1ei?t and
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o = pzeig2 interact, their amplitudes superimpose. The resultant
amplitude pj2 of is given by:

P12 = Y1 + |

= |P1€i9‘ + prei®:

(3
= \/Pf + p3 +2p1pz cos(Aby2)

= p% + pg +i1,2 (ij,k = 2pjpj cos AG,-J)

The interference term iy » explicitly depends on the phase difference
AB12 = 01 — 0 as well as the amplitudes p; and ps.

Thus, due to quantum interference effects, the probability pi2
resulting from the superposition of wave y; and wave ¥, is given
by:

Pip=P1+Py+ipp (4)

where P; and P, denote the probability of wave y; and wave i,.
When the interference term is zero, the quantum probability su-
perposition reduces to the classical linear addition of probability.
When the interference term is positive, the resultant probability
increases; when the interference term is negative, the resultant
probability decreases.

For N-state systems, this extends to pairwise interference:

DW= D ik 5)
Jj=1 j=1

1<j<k<n
3.2 Formulation

For the 3W INS task, the goal is to find video shots of p-th person
at [-th location performing a-th action . To accomplish this task, we
need to obtain the score for each video shot regarding this instance.

In the 2W INS module, we use the PD method [17] to compute
three 2W INS score matrix: person-action SPA ¢ RIPIXIAL action-
location SAL e RIMAIXILI and location-person SLP ¢ RILIXIPI
where |P|, |A| and |L| denote the total number of the person, action
and location categories in the query sets. The score matrices contain
instance-specific probabilities, where Ppq € R, Py € R, P, € Rare
the 2W INS scores of p-th person and a-th action , a-th action and
I-th loction as well as I-th location and p-th person. In the semantic
interference module, these 2W probabilities are used to derive the
2W semantic phases 0pq € R, 04 € Rand 0j, € R and amplitudes
Ppa € R, pg; € Rand pj, € R, which are then used to construct
the 3W semantics amplitude pjq; € R. In the temporal interference
module, We need to consider other shots, the number of shots is
N, and the current shot is n-th shot. we realign the amplitudes
{P;n}J,le € RN and phases {0;,,}%:1 € RN of nearby shots and
ultimately output the 3W semantic amplitude p;l pal fused with
other shots. The square of this amplitude P,, 4 serves as the final
score for the n-th video shot.

3.3 2WINS

We follow [17], using Person-Action (PA) module FF4, Action-
Location (AL) module FAL, and Location-Person (LP) module F-¥
to obtain different 2W INS score matrices:

SPAZFPA(y), SAL—FAL(y), SLP — FLP(y). (©)
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Figure 3: Model architecture. We model semantic overlap using the semantic interference module and distinguish the effects of

different shots with the temporal interference module.

where v denotes the current video shot and $4, SAL and SAL
denote the score matrices of three 2W INS results.

These score matrices have been normalized, where the different
scores in each matrix can be interpreted as probabilities for distinct
instances:

PA _ [PLIAl QAL _ [ALILI  qLP _ [LL,|P|
§7= {PP“}P:I,a:I’ §7 = {P“l}azl,lzl’ § = {P’P}l=1,p=1‘ )

where Ppq, Pgj and Py, represent the probability of the p-th person
and a-th action, the a-th person and [-th action as well as the I-th
person and p-th action.

3.4 Semantic Interference

After obtaining the three 2W INS results, we need to fuse them
to derive the 3W INS result. We employ quantum interference
(QI) module to fuse the three 2W INS results. According to the
relationship between probability and amplitude, the probability can
be calculated as:

Ppa=+\Ppa,  par=NPa  p1p = [Plp- 3)

where ppa, pg and pj, denote the amplitudes between person p and
action g, action a and location [, as well as location [ and person p,
respectively.

At this stage, constructing the wave still requires the correspond-
ing phase. To address this, we design a phase generator. We con-
catenate these amplitudes and pass them through a Multilayer
Perceptron (MLP) to obtain the phase.

Opa, 041, 01p = 7 - tanh MLP(concate(ppa,pal,plp)) 9)

where 0pa, 04 and 0j,, denote the phrases, concate(-) denotes the
concatenate operation, and MLP denote the Multilayer Perceptron.
To ensure the phase adheres to physical constraints, we map it to
the interval (-7, 7) using 7 - tanh(-).

With all magnitude and phase components obtained, we can
obtain the waves corresponding to each 2W INS result
i0q1

i6 6
Ypa = Ppa’ %, Yar = pare” . Yip = prpe”'r.  (10)
We model the final 3W wave as a superposition of 2W waves,
using their interference terms to capture semantic overlap. Thus,
the final amplitude p;,q; can be computed by leveraging quantum
interference theory, formulated as:

Ppal = [Vpa + Va1 + Ir//lp| (11)

We use the probability of the interfered wave, i.e., the squared
magnitude of the amplitude, as the final score for ternary semantic
relationships:

Ppar = Ppal2 (12)
The final loss £ is computed using the Mean Squared Error
(MSE) loss, formulated as:

L= MSE(gtpal’ Ppul) (13)

3.5 Temporal Interference

After completing the model training, we employ quantum interfer-
ence theory to perform rank optimization across different shots.
Since other shots are involved, we assume there are N shots , with
the current one being the n-th shot, and the results from different
shots are distinguished using subscripts.

We estimate the semantic affinity degree wp, ,, between the n-th
shot and m-th shot, which is calculated by:

Wnm =0+ T) *en,m (14)

2o 202

where 0 is a coefficient to modulate the semantic affinity and o is
the standard deviation of a standard normal distribution. And ey,
represents the visual similarity between the n-th video shot and
the m-th video shot.
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We first compute the relative amplitudes of other shots. The
amplitude differences, weighted by their semantic affinity degrees,
are then adopted as the new relative amplitudes. Since we only
consider the positive influence of other shots on the amplitude, any
relative amplitude with a negative amplitude difference is set to 0:

p;n,pal =Wnm " max(pm,pal ~ Pn,pal> 0) (15)

where max(-, -) denotes maximization operation.

To differentiate the influence of adjacent shots versus distant
shots, we assign phase terms based on their temporal distance from
the current shot, where the current shot serves as the reference
with zero phase while other shots are assigned a phase proportional
to their shot index difference multiplied by a phase coefficient k:

l//rln,pal = p;n,pul ’ ek(n—m)l (16)
where ¥, pq1 denotes the m-th shot’s wave, and k denote phase
coefficient with a value of 0.01 which ensures phase differences
remain bounded within (-, 7).

The phase of the n-th shot is set to 0, and its wave function
Yn,pal is directly represented by its amplitude py, pq;. The final as-
signment of 3W INS semantics py, 54 is obtained through quantum
interference-based superposition of wave functions from all shots:

N
Pnpal = |‘r//n,pal + Z Il/;n’paﬂ (17)
m=1

The final 3W probability Ppal is also calculated by converting
the amplitudes to probabilities through quantum theory, where
probabilities equal the square of the amplitudes. The probability
then serves as the final 3W INS score for shot ranking:

Ppal = Py pai (18)

4 EXPERIMENT

To validate the superiority of the proposed QIPD method, we con-
duct experimental evaluations on three large-scale 3W INS datasets.
We compare our proposed method QIPD with both SOTA 3W INS
approaches and Rank Aggregation (RA) methods Then, the effec-
tiveness of individual parts is analyzed in QIPD method through
the ablation study, and the dynamic performance of QIPD method
is investigated with varying model parameters. Lastly, qualitative
results of different cases in 3W INS datasets demonstrate the real
performance of various 3W INS methods.

4.1 Experiment Settings

Datasets. We use three 3W INS datasets [17] built from two main
resources: (1) one British television soap opera Eastenders, (2) two
famous American TV series including Friends and The Big Bang
Theory (TBBT) [17]. Three large-scale 3W INS datasets totally
comprise 86 search topics spanning 675,759 shots from three TV
series, including Eastenders, Friends and TBBT. Specifically, the
Eastenders consists of 43 topics including 12 persons, 6 actions
and 8 locations, with 1,567 groundtruths. The Friends comprises
43 topics with 463 groundtruths, composed of 8 persons, 4 actions
and 7 locations. The TBBT contains 22 topics involving 9 persons,
5 actions and 6 locations, with 451 groundtruths. Generally, the
number of groundtruth shots in the training set is higher than that
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in the test set, and the overlap of semantics is minimized to prevent
any 3W INS topics from appearing in both sets.

Evaluation Metrics Similar to [34], we adopt the mean average
precision (mAP) to evaluate the overall performance across all
queried topics:

ZIERq P@Z(Q)
=10l Z Ryl 9

where Q is the entire query set, Ry is the set of positions of the
answer shots for query topic g in the corresponding ranked list,
and P@i(q) is the precision of the top-i shots in the ranked list
corresponding to query topic q.

Implementation Details. We use Retinaface [9] pre-trained on
WIDER Face dataset [9] to detect faces in videos, and Arcface [8]
pre-trained on MS1Mv2 dataset [18] to recognize detected faces.
PPDM [28], pre-trained on HICO-DET dataset [5], is used for action
detection and recognition. SASR [30] is used to extract visual fea-
tures for location recognition. To train the QIPD network, we adopt
the Adam optimizer with a learning rate of 0.0001 and a dropout
rate of 0.5. We set model paremeter § = 1.6 and 0 = 7

4.2 Comparison with 3W INS methods.

Comparative Baselines. To evaluate the effectiveness of the pro-
posed QIPD, we select the following related works for quantitative
comparation:

e PxAXL [17] denote the typical CD method, which multiplies
the recognition scores of independent semantics.

ALBEF [24] introduces “momentum distillation”, leading to
better performance by creating more coherent and synergistic
representations of the two data types.

CLIP [38] explores training visual models using BERT [10] as
supervision, leveraging the semantic information in language
to guide the learning process of ViT [11].

ALPRO [21] introduces “entity prompt” to align video content
with relevant language entities. It significantly improves per-
formance in tasks requiring the interpretation and association
of video content with language.

BLIP and BLIP-2 [22, 23] employ a method that bootstraps
the model with rich, multimodal information. The BLIP-2 in-
novates by combining frozen image encoders with Large-scale
Language Models (LLM).

Vitamin [6] explores the effectiveness of different structures
in VLM and proposes a 3-stage hybrid architecture.

e SAM [45] uses the visual features of actions and locations
using an attention scheme to generate a concerted feature for
composite-semantics retrieval.

3W [17] partially decompose the 3W INS problem into three
semantic-correlated 2W INS problems i.e., person-action INS,
action-location INS, and location-person INS.

Results on Eastenders. The 3W INS results on Eastemders dateset
are shown in Table 1, where the red number represents the optimal
value in each column, while the blue number indicates the second-
best value. This notation is consistently applied in all subsequent
tables. In the Eastenders dataset, We can see that QIPD method
exhibits a remarkable mAP performance of 22.8%, which is higher
than both CD method and the best ND method ViTamin.
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Table 1: The comparative results (%) of 3W INS methods on Eastenders.
Query Topic ID
Method Venue | 15 16 19 20 26 28 30 36 37 39 40 44 46 48 49 50 51 52 55 56 57 | AP
[CD[Px AXL[17]] TIP25 [424 20.1 186 31.9 17 80 204 1.0 136 137 143 178 197 11.0 202 04 14 43 550 0.7 18.1[ 159 |
ALBEF [24] [ NIPS21 172 58 36 64 11 21 115 02 63 15 106 11.0 46 95 51 01 04 17 81 04 33| 53
CLIP [38] |[ICML21|21.2 66 41 77 1.0 21 121 02 66 17 64 202 39 82 57 01 05 19 92 04 33| 59
ND | ALPRO [21] |CVPR22[30.5 7.6 59 94 10 28 111 03 64 22 61 176 51 99 74 01 05 22 184 04 36| 71
BLIP [23] |ICML22|316 7.6 50 101 1.0 28 101 04 63 20 45 104 52 108 89 02 07 24 304 04 36| 73
BLIP-2 [22] |ICML23[30.1 7.7 50 106 1.1 29 90 05 66 19 81 97 41 201 73 02 06 22 206 04 39| 7.3
ViTamin [6] |[CVPR24|188 173 59 123 19 62 43 92 24 104 37 13 41 31 35 27 42 08 194 02 237| 74
SAM [45] |TMM21[421 20.1 184 348 3.1 7.6 66 11 150 40 27.0 120 125 11.2 202 2.1 1.4 3.6 582 0.7 194] 153
PD| 3W[17] TIP 25 |49.8 33.1 159 459 21 7.8 304 1.1 20.6 214 225 156 240 231 47.8 0.1 1.2 3.1 719 09 187 | 21.6
QIPD Ours |51.2 36.4 18.7 46.0 2.5 10.9 20.8 0.8 13.8 25.4 22,5 27.3 14.4 27.7 46.3 0.3 2.0 4.8 80.7 0.3 21.5| 22.8
Table 2: The comparative results (%) of 3W INS methods on Friends and TBBT.
Friends Query Topic ID TBBT Query Topic ID
Method Venue | 1 14 32 37 46 47 49 51 52 59 60 o1 |™APll36 37 30 42 45 50 52 53 54 58 62 | AP
[CD]PXAXL[17]] TIP25 [3.7 2.7 221 04 0.5 0.6 23 11.9 68 08 07 106] 53 ][0.0 00 19 09 23 43 90 11 26 55 20][ 27
ALBEF [24] [ NIPS21 [0.0 00 0.0 0.0 00 00 00 00 00 00 00 00| 00 [[00 00 00 00 00 00 00 00 00 01 00| 00
CLIP [38] [ICML21|05 0.0 1.6 0.0 0.0 0.0 00 06 02 00 00 64| 08 |/01 00 05 01 09 00 00 1.2 1.4 108 00| 1.4
ND | ALPRO [21] |CVPR 22103 0.0 06 00 00 00 01 03 01 00 00 56| 06 [[00 0.0 113 00 0.1 00 0.0 01 04 56 14| 17
BLIP [23] [ICML22|14 01 7.6 00 00 00 02 24 05 01 02 96| 1.8 |/01 00 98 45 31 05 02 1.2 26 70 07| 27
BLIP-2 [22] [ICML 23|11 01 7.0 01 00 0.1 02 1.8 08 00 01 90| 1.7 |[01 00 88 20 32 06 02 09 23 65 00| 2.2
ViTamin [6] | CVPR 24| 0.6 0.1 7.9 0.0 00 00 01 13 04 01 00 74| 15 (/00 00 39 29 23 7.7 40 09 36 49 44| 3.1
SAM [45] |TMM21]27 1.1 01 01 02 01 01 40 15 01 00 77| 1500 00 00 04 23 1.8 19 01 04 10 00] 07
PD| 3W[17] TIP25 |49 43 558 0.7 07 09 7.0 17.8 61 1.1 03 10.2| 9.1 [|00 00 7.9 31 23 89 38 07 72 45 87| 43
QIPD Ours |4.7 3.4 624 0.6 0.7 0.8 7.3 17.3 9.7 1.0 1.2 13.7| 10.2 ||0.0 0.0 21.1 3.5 2.3 8.9 4.3 1.2 11.2 12.8 124| 7.1

Results on Friends and TBBT. The 3W INS results on Friends and
TBBT datesets are shown in Table 2. On the Friends dataset, QIPD
achieves the highest mAP score of 10.2%, surpassing the 4.9% of
the conventional CD method PxA, and significantly exceeding the
8.5% of the best ND method BLIP. On The Big Bang Theory (TBBT)
dataset, QIPD also demonstrates superior performance, achieving
an mAP score of 7.1%. This result nearly doubles the 4.4% mAP of
the conventional CD method PxA and significantly outperforms the
4% mAP attained by the best ND method, ViTamin. Compared with
the PD method, our proposed QIPD achieves a 1.2% improvement,
effectively validating the efficacy of quantum interference modeling.
Compared with the PD method, QIPD achieves improvements of
1.1% and 2.8% on these two datasets, respectively.

Additionally, we observe a phenomenon: QIPD achieves signifi-
cantly greater performance improvement on the TBBT dataset com-
pared to the other two datasets. In TBBT, the main characters (e.g.,
Sheldon) exhibit distinctive professional traits (as physicists), which
creates strong correlations between their identities, settings (e.g.,
laboratories), and actions (e.g., scientific activities). This results in
more pronounced semantic overlap within the data. Consequently,
our method demonstrates more substantial performance gains.

4.3 Comparison with RA methods.

RA methods. For systematic validation of our quantum interfer-
ence fusion method, we establish baseline rankings using three
2W INS results generated by 3w and conduct comparative ex-
periments with different RA methods, which contains: RRF [7],

PostNDCG [14], Median [12], MEAN [4], HPA [14], Dowdall [39],
ER [33], CG [43] and BordaCounT [3].

Results on Eastenders. Table 3 presents the comparison of 3W
INS results between QIPD and different RA methods on the Easter
dataset. 3W w/ A represents the baseline rank generated by 3W,
followed by rank aggregation using Method A. QIPD outperforms
the best ranking fusion method HPA by 1.3%, demonstrating the su-
periority of our approach. It is worth noting that these RA methods
fail to surpass PD, a simple product-based fusion method, indicating
that fusion approaches disregarding the characteristics of 3W INS
cannot achieve satisfactory results.

Results on Friends and TBBT. Table 4 compares the 3W INS
results of QIPD and different RA methods on the Friends and TBBT
datasets. QIPD outperforms the best ranking fusion method, MEAN,
by 0.5% and 2.9%, further demonstrating its superiority. Notably, the
top-performing RA method, MEAN, simply averages predictions,
suggesting that complex approaches do not necessarily surpass
well-designed simple methods, e.g., MEAN and our proposed QIPD
in 3W INS tasks.

4.4 Ablation Study

Baselines. To systematically evaluate the contributions of seman-
tic interference (SI) and temporal interference (TI) in our QIPD
framework, we conduct an ablation study comparing four variants
on 3W INS datasets: (1) The baseline 3W method without either
SI or TI modules; (2) 3W w/ SI incorporating only semantic inter-
ference; (3) 3W w/ TI with solely temporal interference; and (4)
our complete QIPD framework integrating both CI and TI modules
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Table 3: The comparative results (%) of RA methods on Eastenders.

Query Topic ID

Method 13 16 19 20 26 28 30 36 37 39 40 44 46 48 49 50 51 52 55 56 57 | AP
[ 3W [498 331 159 459 21 7.8 304 1.1 206 214 225 156 240 231 478 01 12 31 719 09 187][ 216 |
3W w/ RRF 00 00 00 00 167 26 01 00 01 03 00 00 01 00 00 08 01 02 00 59 00| 1.3

3W w/PostNDCG | 00 00 02 00 01 06 00 00 00 01 01 00 00 00 01 00 00 05 00 00 01| 0.1
3W w/ Median 00 00 00 00 167 26 01 00 01 03 00 00 01 00 00 08 01 02 00 59 00| 1.3
3W w/ MEAN | 395 462 239 201 27 106 13.6 14 7.2 286 253 49 305 202 477 08 15 29 810 03 31.9]| 21.0
3W w/ HPA 42,6 463 240 247 27 101 155 15 7.2 287 284 57 314 209 458 08 1.7 41 759 04 324 215
3W w/ Dowdall |38.8 46.0 238 191 27 104 131 14 7.0 287 252 47 306 199 476 06 14 28 810 03 31.8| 208
3W w/ ER 395 462 237 200 27 106 13.6 15 7.2 286 253 49 305 202 477 08 15 29 821 03 31.9| 21.0

3W w/ CG 395 462 239 201 27 106 13.6 14 7.2 286 253 49 305 202 477 08 15 29 81.0 03 31.9| 21.0

3W w/ BordaCount | 0.0 0.0 00 00 167 26 01 00 01 03 00 00 01 00 00 08 01 02 00 59 00| 13
| QIPD [51.2 364 18.7 46.0 24 10.9 20.8 0.8 13.8 254 27.3 144 27.7 267 463 0.3 2.0 4.8 80.7 0.3 215] 22.38 |

Table 4: The comparative results (%) of RA methods on Friends and TBBT.
Friends Query Topic ID TBBT Query Topic ID

Method 11 14 32 37 46 47 49 51 52 59 60 61 |™APlls6 37 30 42 45 50 52 53 54 58 62 |MAP
[ 3W [49 43 558 0.7 07 09 70 178 61 1.1 03 102] 91 ][0.0 00 79 31 23 89 38 07 72 45 87] 43 ]
3W w/ RRF 1.2 1.5 00 00 00 03 0.1 0.0 00 00 00 97] 1.1[[00 00 00 00 23 00 1.2 00 02 44 13] 09

3W w/ PostNDCG [0.1 0.0 0.1 0.0 0.0 0.1 00 0.1 03 00 01 47| 05100 00 00 00 23 02 1.2 00 01 18 04| 05
3W w/ Median [1.2 1.5 0.0 0.0 0.0 03 01 00 00 00 00 97| 1.1[00 0.0 00 00 23 00 1.2 0.0 02 44 13| 09
3Ww/MEAN |73 39 529 0.8 28 09 21 233 86 1.1 1.3 114| 97 [|00 00 9.4 33 23 94 38 1.0 6.1 49 57| 4.2
3W w/ HPA 02 01 0.0 00 0.0 00 00 00 00 00 01 82| 07100 00 00 01 06 02 1.2 0.0 00 49 02| 0.7
3W w/Dowdall |73 3.9 528 0.7 28 09 21 232 86 1.1 1.3 11.7| 97 (|00 00 93 32 23 93 37 09 60 46 55| 4.1
3W w/ ER 73 39 529 07 28 09 21 233 86 1.1 1.3 11.3| 97 (/00 0.0 94 33 23 94 38 1.0 61 49 57| 42

3W w/ CG 73 39 529 0.8 28 09 21 233 86 1.1 13 11.4| 97 /{00 00 94 33 23 94 38 10 61 49 57| 42

3W w/ BordaCount [ 1.2 1.5 0.0 0.0 0.0 03 0.1 00 00 0.0 00 97| 1.1/[00 00 00 00 23 00 1.2 00 0.2 44 13| 09
[ QIPD [4.7 3.4 624 0.6 0.7 0.8 7.3 17.3 9.7 1.0 1.2 13.7[ 10.2 [J0.0 0.0 21.1 3.5 2.3 8.9 4.3 1.2 112 12.8 12.4] 7.1 |

Table 5: Ablation Study Results on Three Datasets

l Method [ Eastenders Friends TBBT [ Average ‘

HE 21.6 9.1 43 [ 117 |
3W w/ CI 22.3 9.8 5.2 12.4
3W w/ TI 22.7 10.1 6.9 13.2

[ oD | 223 10.2 71 [ 134 |

for joint quantum interference modeling. This controlled ablation
study enables precise measurement of each component’s individual
and combined effects on overall system performance.

Results. As presented in Table 5, our ablation study reveals signifi-
cant performance gains through quantum interference modeling.
While the baseline 3W achieves 11.7% mAP, incorporating content
interference (3W w/ SI) and temporal interference (3W w/ TI) im-
proves performance by 0.7% and 1.5% respectively, demonstrating
the individual value of both modalities. The complete QIPD frame-
work, integrating both SI and TI, achieves the highest mAP of 13.4%,
validating the synergistic effect of quantum interference.

4.5 Dynamic Performance

We conducted dynamic performance experiments on parameters 6
and o using the Eastender dataset. Figure 5 presents the results of
the ablation experiment with respect to the coefficient to modulate
the semantic affinity 6 and the standard deviation of a standard

normal distribution o. Our experimental results demonstrate that
the proposed QIPD method achieves robust performance across
a wide range of parameter combinations, with the optimal accu-
racy of 22.8% attained at 6 = 1.6 and o = 7. As shown in Figure 5,
all parameter values fall within a narrow range of 21.9% to 22.8%,
with a minimal variation span of only 0.9%. 83.3% of the param-
eters are concentrated between 22.6% and 22.8%, demonstrating
the method’s robust stability across parameter choices. This tight
distribution suggests that the method performs consistently well
without requiring precise parameter tuning in practice.

4.6 Efficiency Analysis

Table 6 compares model efficiency and performance, where time is
inference time per sample, # Para. denotes total trainable parameters
and GFLOPS measures giga floating point operations per sample.

Our proposed QIPD achieves the best performance (22.8%) while
maintaining competitive efficiency. With 153M parameters and 29.3
GFLOPS, it demonstrates a favorable trade-off between accuracy
and computational cost. Compared to the similarly efficient 3W ,
QIPD improves accuracy by 1.2% with only a marginal increase
in inference time. Notably, QIPD significantly outperforms larger
models like BLIP (7.3% mAP, 553M params) and ALPRO (7.1% mAP,
337M params) while being 2.2-3.6x more parameter-efficient. The
results highlight QIPD’s effectiveness in balancing high perfor-
mance and low computational overhead.
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Figure 4: Qualitative comparison resultsin Eastenders. The correct shots are enclosed in green with incorrect ones in red.

Figure 5: Dynamic Performance of parameters 6 and o.

4.7 Qualitative Results

Figure 4 shows a search topic and the corresponding top-7 ranking
results generated by 3W, 3W with context interference (3W w/ CI),
3W with temporal interference (3W w/ CI) and our proposed QIPD
methods, respectively. The left side displays the queried person,
action and location. The right side presents the top-7 shots, where
correct shots are enclosed in green and incorrect ones in red.

In the case of “Starry drinks in pub”, the 3W yields suboptimal
retrieval results due to its inability to model semantic overlap. The
3W w/ CI addresses this linguistic overlap issue and consequently
improves retrieval performance. Similarly, 3W w/ TI, which con-
siders the influence of adjacent video segments, also demonstrates
performance enhancement. Our proposed QIPD method, which
incorporates both types of interference (context and temporal),
achieves superior retrieval results.

5 CONCLUTION

In this paper, we proposed Quantum Interference Partial Decom-
position (QIPD), a novel approach for 3W INS in story videos, ad-
dressing the critical semantic overlap challenge in Partial Decom-
position (PD) methods. Inspired by quantum interference theory,

Table 6: Comparative analysis of model efficiency.

| Method [ mAP | #Para. Time GFLOPS |

ALBEF 53 | 316M  15.8s 17.6
CLIP 59 | 256M 3.7s 16.9
ALPRO 7.1 337M 3.3s 96.1
BLIP 7.3 | 553M 5.6s 191.2
SAM 15.3 128M 1.3s 22.6
3w 21.6 151M 1.9s 29.3

[ QIPD [ 228 | 1535M  20s 293 |

our method models semantic reinforcement and conflict through
constructive and destructive interference, while temporal inter-
ference dynamically weights shot relevance based on proximity.
Extensive experiments on three public datasets demonstrate that
QIPD outperforms existing methods, validating its effectiveness in
fine-grained video understanding.

The current work is still limited to TV datasets. We prioritized TV
dramas because they provide rich script descriptions and subtitle
timings, making it easier to extract 3W elements. For the same
reasons, other video types with abundant textual descriptions, such
as movies, stage plays, and sports videos, are also suitable. Such
data could be used to evaluate our method if 3W annotations are
available, making this a viable direction for future work.
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