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Abstract

Multi-exit neural networks represent a promising approach

to enhancing model inference efficiency, yet like common

neural networks, they suffer from significantly reduced ro-

bustness against adversarial attacks. While some defense

methods have been raised to strengthen the adversarial ro-

bustness of multi-exit neural networks, we identify a long-

neglected flaw in the evaluation of previous studies: simply
using a fixed set of exits for attack may lead to an overes-
timation of their defense capacity. Based on this finding,

our work explores the following three key aspects in the ad-

versarial robustness of multi-exit neural networks: (1) we

discover that a mismatch of the network exits used by the

attacker and defender is responsible for the overestimated

robustness of previous defense methods; (2) by finding the

best strategy in a two-player zero-sum game, we propose

AIMER as an improved evaluation scheme to measure the

intrinsic robustness of multi-exit neural networks; (3) go-

ing further, we introduce NEED defense method under the

evaluation of AIMER that can optimize the defender’s strat-

egy by finding a Nash equilibrium of the game. Experiments

over 3 datasets, 7 architectures, 7 attacks and 4 baselines

show that AIMER evaluates the robustness 13.52% lower

than previous methods under AutoAttack, while the robust

performance of NEED surpasses single-exit networks of the

same backbones by 5.58% maximally.

1. Introduction
Deep neural networks have achieved remarkable advance-
ments in the field of computer vision, yet researchers are
drawn to two pressing issues. First, the computational cost
escalates as the networks grow deeper, leading to the rise
of multi-exit neural networks [11, 12, 33, 37, 43]. These
networks utilize an early-exit mechanism to produce results

*Chao Liang is the corresponding author.

Figure 1. The triple focuses of this paper and their relationship.
(1) the A-D mismatch phenomenon we find; (2) The improved
evaluation scheme AIMER we propose; (3) The NEED method to
optimize the defense under the evaluation of AIMER. (2) and (3)
are principled by game theory.

from shallower branches, maintaining accuracy while re-
ducing computational load. Second, the vulnerability of
neural networks to adversarial attacks [2, 22, 32, 42] poses
a significant challenge, where small, carefully crafted per-
turbations can be added to input data to deceive the predic-
tions of models. In recent years, enhancing the robustness
of models under adversarial attacks has thus emerged as a
pivotal research topic [9, 19, 22, 27, 41, 47].

Inspired by the above work, increasing efforts have been
devoted to the study of the adversarial robustness of multi-
exit neural networks [3, 10, 13, 15, 16]. However, we iden-
tify a subtle defect long-neglected in the current robustness
evaluation: simply using fixed network exits as the targets of

attack results in insufficient flexibility that unfairly weakens

the attacker while favoring the defender. This might lead to
an overestimation in the robustness evaluation of multi-exit
neural networks. In this paper, by delving into the following
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three challenging problems, we strive to expose the negative
consequence of such flawed exit-fixed evaluation and resort
to game theory to amend it.
What does exit-fixed robustness evaluation lead to?
Through experimental investigations of multi-exit neural
networks, we observe a notable phenomenon, which we
term as Attack-Defense (A-D) mismatch. In multi-exit neu-
ral networks, both the attacker and defender have the free-
dom of choosing which exit (or an ensemble) they use for
generating adversarial examples or inference. However,
when the attacker avoids the exact ensemble of exits the
defender uses for inference (i.e., a mismatch), the evalu-
ated robustness is always higher than that of the matching
case (Figure 1), bringing additional robustness apart from
the intrinsic robustness obtained from adversarial training.
Especially when the exits for attack are fixed, it is quite easy
to cause an A-D mismatch by detouring with a different in-
ference strategy. Therefore, we argue that such exit-fixed
evaluation exacerbates the additional robustness brought by
A-D mismatch, leading to an overestimation of defense ca-
pacity long-neglected by previous researchers.
Can we reduce A-D mismatch during the evaluation?
Aware of the drawbacks of using exit-fixed robustness eval-
uation, we aim to find a better attack scheme that can reduce
A-D mismatch during robustness evaluation. However, due
to the uncertainty of the defender’s choice of exits, this task
can be quite challenging. To approach the tricky problem,
we seek inspiration from game theory [35], model the ad-
versarial attack and defense of multi-exit neural networks as
a two-player zero-sum game, and identify the best strategy
for the attacker as the criterion for evaluating adversarial ro-
bustness. We refer to this white-box evaluation scheme as
AdaptIve evaluation of Multi-Exit Robustness (AIMER). It
does not involve any modifications to attack algorithms but
rather optimizes the choice of victim exits. Considering the
robust performance of a network remains constant under a
fixed attack algorithm, AIMER can reduce the additional
robustness and thus more accurately reflect the network’s
intrinsic robustness.
Is it still possible to utilize A-D mismatch under
AIMER? Though A-D mismatch is largely avoided un-
der the more stringent evaluation of AIMER, it cannot be
completely eliminated due to the uncertainty of the attack-
defense game. To maximize the robustness of defense in
the worst-case evaluation, we devise the Nash Equilibrium

Enhanced Defense (NEED) method to reach the minimax
point of the game. Specifically, NEED operates a stochas-
tic strategy inferring with ensembles of exits with a certain
probability, making both the defender and attacker perform
their best strategies by seeking a Nash equilibrium [25].

The efficacy of both AIMER and NEED are verified with
extensive experiments, covering different network architec-
tures, datasets, attack algorithms and adversarial training

Figure 2. The structure of a multi-exit neural network.

methods. An illustration of the main focuses of this pa-
per and their relationship can be found in Figure 1, and our
contributions can be summarized as follows:
• We find the A-D mismatch phenomenon in the robustness

evaluation of multi-exit neural networks, which explains
the overestimated robustness of defense in previous work.

• We raise a more stringent scheme AIMER to evaluate
the adversarial robustness of multi-exit neural networks,
where the attacker operates his best strategy in the attack-
defense game.

• We devise a NEED method for defense by finding a
mixed-strategy Nash equilibrium, which maximizes the
robustness brought by A-D mismatch under AIMER.

• We conduct extensive experiments covering 7 network
architectures, 3 datasets, 7 attack settings and combine
NEED with 4 adversarial training methods, which con-
sistently demonstrate the efficacy of AIMER and NEED.

2. Preliminaries
A multi-exit neural network can be equivalently modeled as
a set of single-exit networks partially sharing their param-
eters. Suppose a multi-exit neural network ω with L exits
is divided into L sequential blocks [ω→i]Li=1 and the final-exit
classifier cL. Each subnetwork of ω can be expressed as
ωi, where ωi = [ω→1, · · · , ω

→
i, ci] with ci being the classifier

in the i-th exit of ω. Given an input x, the output is for-
mulated as a group of predictions from the subnetworks:
fω(x) = [fωi(x)]

L
i=1. The detailed structure of a multi-exit

neural network is depicted in Figure 2.
This paper focuses on the adversarial attack and defense

of multi-exit neural networks, which are very flexible due
to the multiple prediction outcomes. The defender makes
an inference by choosing from or aggregating the results
in fω(x), and some typical inference strategies are speci-
fied in Appendix D. The attacker also has ample choices of
attack schemes to fool the model. Following the previous
work [16], adversarial attacks for multi-exit neural networks
come mainly in three forms, i.e., single attack, average at-
tack, and max-average attack:

xadv
sin,i = argmax

x→↑{x→:|x→↓x|↑<ε}
|L(fωi(x

→), y)| (1)

xadv
avg = argmax

x→↑{x→:|x→↓x|↑<ε}

∣∣∣
1

L

L∑

i=1

L(fωi(x
→), y)

∣∣∣ (2)
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xadv
max = xadv

sin,i↓ where i↔ = argmax
i

∣∣∣∣
1

L

L∑

j=1

L(fωj (x
adv
sin,i), y)

∣∣∣∣

(3)
A detailed explanation of the formulations can be found in
Appendix E. Generally, These three recipes of attacks are
simple in form and easy to implement; however, they only
consider rather limited scenarios for attack (i.e., using ei-
ther a single exit or all the exits for attack), leaving the
remaining overlooked (e.g., picking several particular ex-
its for attack). Unfortunately, the evaluation in previous at-
tempts to improve the robustness of multi-exit neural net-
works [3, 10, 16] was limited to these paradigms, without
considering the risks above. Although they have undertaken
valuable research into the robustness of multi-exit neural
networks, we argue that the evaluation results using limited
recipes of victim exits cannot truthfully reflect the intrinsic
robustness of these defense methods. This is what motivates
us to conduct a more in-depth exploration of this issue.

3. Methodology
In this section, we clarify the problem setup and then se-
quentially detail the main components of our work, i.e.,
the Attack-Defense (A-D) mismatch phenomenon we iden-
tify, the AdaptIve evaluation of Multi-Exit Robustness
(AIMER) and the Nash Equilibrium Enhanced Defense
(NEED) method.

3.1. Problem Setup
To better convey the following concepts, we define a new
attack form for multi-exit neural networks dubbed partial

attack. Let a set of exit indices Ea =
{
n : n → {i}Li=1

}
,

Ea ↑= ⊋ denotes an ensemble of exits selected by the at-
tacker, an adversarial example generated by partial attack is
formulated as:

xadv
par,Ea

= argmax
x→↑{x→:|x→↓x|↑<ε}

∣∣∣∣
1

|Ea|

∑

i↑Ea

L(fωi(x
→), y)

∣∣∣∣

(4)
It allows the attacker a to select any ensemble of network
exits for attack, which unifies single attack (Equation 1) and
average attack (Equation 2) and, in the meantime, considers
more possibilities. Similarly, the defender d also has the
freedom to choose any ensemble of exits Ed =

{
n : n →

{i}Li=1

}
and Ed ↑= ⊋ to infer with the mean of logits.

Threat Model. This paper focuses on the white-box ad-
versarial robustness of multi-exit neural networks with the
following setups:
• The gradient information from every network exit can be

utilized for the generation of adversarial examples.
• We assume that a and d decide their strategies before-

hand, are aware of the probabilistic strategies of each
other, and are not allowed to alter their strategies during
evaluation.

• a first generates adversarial examples following the at-
tack strategy, and then uses the adversarial examples to
challenge d that independently makes the inference.

• Although a and d are aware of the probabilistic strategies
of each other, a has no access to the specific exit ensemble
Ed being selected for inference by d.

3.2. Attack-Defense Mismatch
Following the above setup of attack and defense, we carry
out an empirical study into the adversarial robustness of
multi-exit neural networks. Specifically, we test the robust
accuracy scores using different partial inferences under dif-
ferent partial attacks. Acc(ω, Ea, Ed) evaluates the robust
accuracy of multi-exit neural network ω under partial attack
with Ea and the defender uses partial inference with Ed.
Delving into the example displayed in Figure 3, we make
the following observations:

Remark 3.1. When E→
↓E, Acc(ω, E,E)↔Acc(ω, E→, E),

i.e., using fewer exits for attack than for inference weakens

the attack. The unattacked exits in the ensemble can par-

tially mitigate the attack received by other exits.

Remark 3.2. When E→
↗E, Acc(ω, E,E)↔Acc(ω, E→, E),

i.e., using more exits for attack than for inference also weak-

ens the attack, for the impact is dispersed onto more inactive

exits in inference.

Remark 3.3. When E→
↘E=⊋,Acc(ω, E,E)↔Acc(ω, E→, E).

Using completely different exits for attack from those for

inference weakens the attack, for the exits for inference are

not directly attacked. The decrease in accuracy is simply

due to the shared model parameters or transferability.

Remark 3.4. When E→
↘E ↑=⊋, |E→

≃E| > max(|E→
|, |E|),

Acc(ω, E,E) ↔ Acc(ω, E→, E). Using exits partially dif-

ferent from those for inference weakens the attack, suffering

from both the unattacked exits and the dispersed impact in

Remark 3.1 and 3.2.

Attack-Defense (A-D) mismatch happens when Ed ↑=
Ea (correspondingly, A-D match when Ed = Ea), consist-
ing of the 4 situations in the remarks above. Thereby we
summarize them into a more concise assumption about the
robust performance of multi-exit neural networks:

Assumption 3.5 (A-D Mismatch). We assume that when

E→
↑= E,Acc(ω, E,E) ↔ Acc(ω, E→, E).

It indicates that the most effective partial attack for a multi-
exit neural network is to attack exactly the same ensemble
of exits as the defender uses for inference, which is an A-
D match case. As a result, for the defender, evading such
precisely “matching” attacks and taking advantage of A-D
mismatch makes a cunning yet indeed effective defensive
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Figure 3. A demonstration of A-D mismatch. The accuracy scores of a 4-exit
ResNet-18 under PGD-20 attack are plotted, enumerating all the cases in which the
attacker and defender use continous exit ensembles.

Figure 4. The principle of finding the best strategy
for the attacker with AIMER.

Figure 5. The principle of finding the best strat-
egy for the defender in the Nash equilibrium with
NEED.

tactic, which can provide an additional portion of robust-
ness apart from the intrinsic robustness of the networks as
depicted in Figure 1.

Despite the seemingly enhanced robustness thanks to A-
D mismatch, the crux of the issue lies in that a savvy at-
tacker, fully aware of the defender’s strategy, will strive to
minimize the occurrence of mismatch. However, the prac-
tice of using three fixed attack recipes to evaluate multi-exit
neural networks, as demonstrated in previous works such as
[3, 10, 16], has largely overlooked the impact of A-D mis-
match. We believe this is problematic for evaluation since
the additional robust scores brought by A-D mismatch ob-
scure the intrinsic robustness of the networks.

3.3. Adaptive Evaluation of Multi-Exit Robustness
Through the phenomenon above, mismatched choice of ex-
its between the attacker and defender is responsible for
an overestimation in adversarial robustness. Therefore, to
more accurately reflect the intrinsic robustness of multi-exit
neural networks, a desirable evaluation should maximally
hit exits used by d for inference. To this end, we attempt to
provide a solution called AIMER that models the problem
with game theory [35] and seeks the best strategy for the
attacker to reduce the impact of A-D mismatch.
Model setup. The white-box adversarial attack and defense
of multi-exit neural network ω can be modeled as a two-

player complete information static game G, with a set of

players P = {a, d}, where a denotes the attacker and d
denotes the defender. Suppose a performs partial attacks
and d uses partial inference, then the action space for these
two players is A =

{
E : E → {n : n → {i}Li=1}, |E| > 0

}
.

Note that |A| = 2L ⇐ 1, indicating each player has 2L ⇐ 1
types of actions to take.
Payoff functions. Since d endeavors to make the network
reliable enough under attacks, i.e. to maximize the accu-
racy score, while a aims to do quite the opposite, the payoff
function for a and d when a attacks Ea and d infers with
Ed can be formulated into a zero-sum game:

εa(Ea, Ed) = ⇐εd(Ea, Ed) = ⇐Acc(ω, Ea, Ed) (5)

The function values of εa and εd under every Ea and
Ed constitute payoff matrices Ma,Md

→ R|A|↗|A|, and
Ma = ⇐Md. In practical scenarios, due to the expensive
cost to have complete tests of the network (see Appendix
F.2), it is impossible to precisely understand the payoff ma-
trix of this game. Therefore, we employ an approximation
approach, selecting a subset of the dataset for an average
attack to ascertain the characteristics of the network (Al-
gorithm 3 in Appendix). Subsequent calculations are then
based on this approximate matrix M̂a = ⇐M̂d

→ R|A|↗|A|.
The best strategy for the attacker. Aware of the pay-
off matrix M̂a, a can calculate his best strategy in G with
the following method. We default the strategy in G in a
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mixed form, i.e., performing each action in A with a cer-
tain probability. Let the strategies of a and d be sa =
[sa1 , s

a
2 , · · · , s

a
|A|]

↘ and sd = [sd1, s
d
2, · · · , s

d
|A|]

↘, which

satisfy sa, sd → S , S = {s → R|A| : si ⇒ 0,
∑|A|

i=1 si = 1},
representing the probability vector of a and d selecting the
corresponding ensemble of exits. In such a case, the objec-
tive of each player is to maximize his own expected payoff
ua(sa, sd) = (sa)↘M̂asd or ud(sa, sd) = ⇐ua(sa, sd).

As shown in Figure 4, a maximizes his expected payoff
via allocating all the probability to the action correspond-
ing to the maximum value in vector M̂asd. Also, when
multiple actions correspond to the same maximum value, a
will not favor any particular one but will randomly choose
among them. Therefore, a’s best strategy can be represented
as a probabilistic vector sa↔ = [sa↔i ]|A|

i=1, where

sa↔i =





1/|I↔|, i → I↔ = argmax

i≃|A|
(M̂asd)i

0, otherwise
(6)

and (·)i denotes the i-th element of a vector. This formu-
lation obtains the corresponding best strategy sa↔ once the
strategy of the defender sd is given. We categorize the cal-
culation of sd into three cases (see Appendix D for details):
• For static inference, d simply uses a fixed exit or ensem-

ble for inference: sd = [0, · · · , 0, 1, 0, · · · , 0]↘, with the
probability of corresponding action set to 1.

• For dynamic inference, d follows a certain rule to choose
exits and it is difficult to model his strategy. In this case
we test the frequency of using each exit under an average
attack as a surrogate for sd.

• For random inference, d picks his exits or ensemble with
pd. Since in a white-box setting pd is common knowl-
edge, we can easily obtain sd = pd.

With the best strategy of a, one can generate the ad-
versarial example xadv

AIMER for AIMER evaluation (Algo-
rithm 1 in Appendix) by the following formulation, where
random(C,p) denotes random choice from set C accord-
ing to the probability distribution p:

xadv
AIMER = xadv

par,random(A,sa↓) (7)

3.4. Nash Equilibrium Enhanced Defense
From the attacker’s perspective, A-D mismatch should be
minimized to obtain a more accurate evaluation (Section
4.2); yet on the opposite side, A-D mismatch can also be
utilized by the defender to confuse the attacker: avoiding
the exits chosen by the attacker makes the gradients in the
attacks less effective (see Appendix C.2 for detailed discus-
sions). Specifically, under the strict evaluation of AIMER,
the key to increasing the mismatch is to find the minimax
point of the adversarial game. Thus, we intuitively devise
the Nash Equilibrium Enhanced Defense (NEED) for multi-
exit neural networks as a robust inference strategy for the

defender. It seeks the Nash Equilibrium (NE) [25] of the
adversarial game, where both players are performing their
best strategies.

As shown in Figure 5, we formulate the NE in this two-
player zero-sum attack-defense game with the following de-
scription. Given that in a zero-sum game, both players seek
their best strategy while assuming the opponent is also us-
ing their best strategy (which is the most disadvantageous
to each other), we can view this as an optimization problem
aimed at maximizing the expected payoff in the worst-case
scenario. Consider the defender’s payoff as the objective
to optimize, a is faced with a maximin problem, i.e., while
d strives to maximize the payoff, a seeks the tight lower
bound ud in the formula.

min
sa↑S

(sa)↘M̂dsd = min
i≃|A|

(M̂dsd)i

= max{ud
→ R|M̂dsd ⇑ ud

· 1}
(8)

where 1 = [1, · · · , 1]↘ → R|A|. Conversely, the de-
fender deals with a minimax problem seeking the tight up-
per bound ud in the formula:

max
sd↑S

(sa)↘M̂dsd = max
i≃|A|

((M̂d)↘sa)i

= min{ud
→ R|(M̂d)↘sa ⇓ ud

· 1}
(9)

By the Minimax Theorem [34], the NE can be finally
achieved in the two-player zero-sum attack-defense game,
where the best strategy of the defender sd↔ can be solved.
Given the page limit, we encourage interested readers to
consult Theorem A.3, its proof and the solution of NE pro-
vided in Appendix A, which systematically explain why sd↔

is optimal and how it can be obtained.

4. Experiments
In this section, we first provide our experiment setup (Sec-
tion 4.1). Next, we show our experimental results and anal-
ysis of the performance of AIMER evaluation scheme (Sec-
tion 4.2) and NEED defense method (Section 4.3). Finally,
we compare the computational cost of AIMER (Section
4.4). Due to page limit, more detailed settings and addi-
tional results are deferred to Appendix B and F.

4.1. Experiment Setup
Dataset and network architectures. We consider three
datasets for evaluation: SVHN [26], CIFAR-10 [20] and
Tiny ImageNet [5]. For multi-exit neural networks, we di-
rectly modify common networks into multi-exit versions,
including VGG-16 [31], ResNet-18 [14], WideResNet-34-
10 [46], ViT-B/16 [7] and employ existing multi-exit archi-
tectures MSDNet [17], RANet [43] and L2W-DEN [12].
Adversarial attacks. We apply the following 7 attack set-
tings, with all of them restricted by l⇐ perturbation bound
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Table 1. Robust accuracy scores (%) obtained by different evaluation schemes. The lowest scores of each column are set in bold. Results
on more architectures/datasets, and under LAFIT [45] attack can be found in Appendix B.

Method Network Dataset Evaluation FGSM PGD-20 PGD-100 EoT-PGD-20 VMI-FGSM AutoAttack

Static (3/4) CIFAR-10

Single attack 60.29 ± 0.00 56.04 ± 0.08 54.12 ± 0.12 54.42 ± 0.06 55.30 ± 0.05 59.34 ± 0.02
ResNet-18 Average attack 56.54 ± 0.00 52.09 ± 0.04 50.51 ± 0.04 50.72 ± 0.04 51.38 ± 0.05 56.49 ± 0.03
(4 exits) Max-average attack 54.32 ± 0.20 50.26 ± 0.34 49.72 ± 0.05 48.96 ± 0.33 49.36 ± 0.29 55.92 ± 0.10

AIMER (ours) 52.81 ± 0.00 45.85 ± 0.05 43.21 ± 0.01 43.60 ± 0.03 45.10 ± 0.03 42.40 ± 0.03

Random SVHN

Single attack 66.57 ± 0.19 52.77 ± 0.46 45.04 ± 0.04 47.60 ± 0.66 48.04 ± 0.66 46.63 ± 0.09
VGG-16 Average attack 62.87 ± 0.07 47.49 ± 0.18 40.86 ± 0.06 42.42 ± 0.13 44.00 ± 0.09 43.42 ± 0.04
(5 exits) Max-average attack 62.11 ± 0.07 45.90 ± 0.18 39.17 ± 0.04 40.40 ± 0.11 42.45 ± 0.09 46.31 ± 0.05

AIMER (ours) 60.87 ± 0.00 43.61 ± 0.04 37.70 ± 0.03 38.55 ± 0.03 40.87 ± 0.02 40.70 ± 0.10

SVHN

Single attack 62.90 ± 0.00 44.81 ± 0.05 37.08 ± 0.04 39.23 ± 0.03 41.17 ± 0.03 39.59 ± 0.12
Dynamic VGG-16 Average attack 62.01 ± 0.00 44.81 ± 0.05 37.93 ± 0.05 39.23 ± 0.03 41.17 ± 0.03 39.97 ± 0.08

[16] (5 exits) Max-average attack 59.82 ± 0.00 43.53 ± 0.08 35.98 ± 0.06 37.78 ± 0.11 39.70 ± 0.02 39.50 ± 0.05
AIMER (ours) 59.65 ± 0.00 42.30 ± 0.04 35.69 ± 0.03 37.30 ± 0.04 39.56 ± 0.04 38.56 ± 0.06

CIFAR-10

Single attack 51.32 ± 0.00 42.31 ± 0.06 38.79 ± 0.05 39.34 ± 0.08 40.31 ± 0.05 35.21 ± 0.06
Dynamic MSDNet Average attack 54.70 ± 0.00 43.65 ± 0.12 38.40 ± 0.05 39.71 ± 0.11 41.81 ± 0.03 35.10 ± 0.04

[3] (5 exits) Max-average attack 60.17 ± 0.00 48.96 ± 0.24 43.72 ± 0.03 44.98 ± 0.18 52.90 ± 0.32 34.22 ± 0.12
AIMER (ours) 51.04 ± 0.00 40.47 ± 0.15 33.73 ± 0.07 35.53 ± 0.10 37.69 ± 0.05 33.64 ± 0.08

CIFAR-10

Single attack 58.76 ± 0.00 56.71 ± 0.05 49.79 ± 0.04 56.31 ± 0.04 56.43 ± 0.03 59.55 ± 0.10
Dynamic ViT-B/16 [7] Average attack 55.19 ± 0.00 52.09 ± 0.03 50.78 ± 0.06 50.91 ± 0.08 51.47 ± 0.05 56.58 ± 0.07

[3] (4 exits) Max-average attack 53.63 ± 0.00 50.57 ± 0.04 49.53 ± 0.05 49.88 ± 0.10 50.22 ± 0.06 55.29 ± 0.09
AIMER (ours) 53.45 ± 0.00 50.47 ± 0.08 49.10 ± 0.03 49.67 ± 0.04 50.17 ± 0.04 54.98 ± 0.05

ϑ = 8/255: FGSM [9], PGD-20 (which means PGD at-
tack with 20 perturbation steps), PGD-100, EoT-PGD-20
[1], VMI-FGSM [36], AutoAttack [4], and LAFIT [45].
Among them, EoT-PGD addresses the stochastic behavior
of the networks, while VMI-FGSM enhances the transfer-
ability of attacks among different network exits.
Evaluation protocol. Given the unique nature of multi-exit
neural networks, we employ a distinct approach for evalua-
tion compared to traditional networks. Overall, we assume
that all attacks are conducted under the white-box setup in
Section 3.1. The attacker first chooses his exit ensemble
to generate the adversarial examples, and the defender then
chooses his exit ensemble for inference. Considering the
possible randomness in evaluation, we obtain the results by
repeating the same test 5 times and report the mean value
and standard deviation.

4.2. Evaluation with AIMER
This section primarily validates the effectiveness of the
AIMER evaluation scheme. We select single attack (against
the last exit; see Appendix B for other exits), average attack
and max-average attack in [16] as our baselines, and use
these four schemes to evaluate different adversarial defense
methods for multi-exit neural networks including [3, 16].
Additionally, we construct two ad-hoc models with static
and random inference strategies. For the static inference
method, we use the third exit for inference; for the random
inference method, we use the 3rd and 5th exits for inference,
with probability [0.5, 0.5] respectively.

An ideal scheme for robustness evaluation should max-
imally reduce the impact of A-D mismatch and achieve

a lower accuracy than others. In Table 1, it can be ob-
served that AIMER measures lower robustness compared
with other evaluation schemes in all the cases. The margin
is largest in evaluating static and random defense methods,
reducing the robustness score under AutoAttack by 13.52%
compared with max-average attack.

Noticeably, in the evaluation of [3], max-average attack
does not necessarily outperform single or average attack.
This reveals its limitation in averaging the adversarial loss
on all exits, for it might be inconsistent with the objective of
seeking the “best” single attack in some cases. Another key
insight from the results is that AutoAttack is not necessar-
ily the strongest attack against multi-exit neural networks,
probably because the black-box ingredients in the algorithm
fail to generalize on the unattacked inference exits.

We are also highly interested in whether AIMER can
truly reduce the occurrence of A-D mismatch. Therefore,
we first define the following metrics to measure the mis-
match rate of two exit ensembles (rmis) and two strategies
(Rmis) for attack and defense:

rmis(Ea,i, Ed,j) = 1⇐
|Ea,i ↘ Ed,j |

|Ea,i ≃ Ed,j |
(10)

Rmis(s
a, sd) =

|A|∑

i=1

|A|∑

j=1

sai s
d
j rmis(Ea,i, Ed,j) (11)

Then we uniformly generate 200 random strategies for the
defender, and find the corresponding strategies for the at-
tacker using the following 4 schemes: (1) a random strat-
egy that uniformly attacks every possible ensemble, (2) a
single attack strategy only considering the main exit, (3)
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(a) ResNet-18, SVHN (b) ResNet-18, CIFAR-10 (c) VGG-16, SVHN (d) VGG-16, CIFAR-10

Figure 6. Mismatch rate Rmis and expected robust accuracy of different attack schemes on different network architectures datasets.
Expected robust accuracy is calculated with the payoff matrix.

Table 2. The Accuracy (%) of different defense strategies evalu-
ated with AIMER. Rmis indicates the mismatch rate; Robust ac-
curacy is obtained under PGD-20 attack. The best result of each
column is set in bold.

Method Rmis Clean Acc. Robust Acc.
Network: ResNet-18 (4 exits), Dataset: CIFAR-10

Single-exit - 84.37 ± 0.00 49.82 ± 0.00
Multi-exit (static) 0.00 84.83 ± 0.00 50.65 ± 0.04
Multi-exit (dynamic) 0.38 83.02 ± 0.00 51.30 ± 0.12
Multi-exit (NEED) 0.43 83.60 ± 0.00 52.77 ± 0.30

Network: VGG-16 (5 exits), Dataset: SVHN

Single-exit - 89.66 ± 0.00 43.35 ± 0.00
Multi-exit (static) 0.00 92.40 ± 0.00 42.33 ± 0.03
Multi-exit (dynamic) 0.36 92.19 ± 0.00 42.33 ± 0.04
Multi-exit (NEED) 0.46 93.70 ± 0.00 45.32 ± 0.16

an average strategy only considering using an ensemble of
all exits, and (4) a strategy found by AIMER. Finally, we
plot the mismatch rate Rmis and the expected robust accu-
racy of the strategy pairs in Figure 6. According to the re-
sults, AIMER greatly reduces both the robust accuracy and
the mismatch rate compared with other schemes. Notably,
none of the 4 schemes tested makes any change to the attack
algorithms, which maintains the intrinsic robustness of the
network. Therefore, we can assume that the robust accuracy
reduced by AIMER is an extra portion that is closely related
to the A-D mismatch phenomenon.

4.3. Defense with NEED
In this section, we primarily showcase the experimental re-
sults demonstrating the efficacy of NEED in enhancing the
adversarial robustness of networks. We conducted tests on
two different network architectures (ResNet-18 and VGG-
16), assessing 4 scenarios for both clean accuracy and ro-
bust accuracy (where robust accuracy is obtained using
AIMER evaluation based on PGD-20 attacks): (1) multi-
exit neural networks using a static strategy for inference
with the main exit; (2) multi-exit neural networks employ-

ing a dynamic strategy for inference; (3) multi-exit neural
networks using the NEED method for inference; and (4)
single-exit networks, where the AIMER evaluation reverts
to standard evaluation.

Interestingly, according to the results in Table 2, with the
aid of the NEED-enhanced multi-exit structure, the robust
accuracy can even surpass that of single-exit networks. This
suggests that NEED is not just a strategy for multi-exit neu-
ral networks but also has the potential to be a method for en-

hancing general adversarial defense performance through
modifications in network structure.

To validate this viewpoint, we conduct further research,
integrating it with various types of adversarial training
methods including PGD-AT [22], TRADES [47], MART
[38], and FAT [48]. Testing with different attack algorithms,
the results in Table 3 consistently demonstrate stable im-
provements. Results on more network architectures and
datasets can be found in Appendix B.

4.4. Computational Cost
This section compares the computational cost of AIMER
and max-average attack that have similar performance in
some cases. In Table 4, we list three aspects of the evalu-
ation schemes: the per-example cost of each attack algo-
rithm, the cost of pre-processing and the cost of a com-
plete evaluation (including pre-processing and evaluation
with every attack algorithm for 5 runs). From the results in
the table, it is evident that AIMER has a significant advan-
tage in both single-sample evaluation and overall evaluation
time cost. This strongly indicates that AIMER is not only
more accurate in reflecting the network’s intrinsic adversar-
ial robustness but also more cost-friendly.

5. Related Work and Discussions
Game theory for adversarial robustness. Game theory
[35] has been applied in various fields of computer sci-
ence [8, 21, 23], yet there is limited previous work looking
into adversarial robustness from a game-theoretic perspec-
tive [28, 29]. The most recent work is [24], which models
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Table 3. Accuracy (%) under different attacks when combining NEED with AT methods on the VGG-16 model and CIFAR-10 dataset.
Better results are set in bold.

Method Clean FGSM PGD-20 PGD-100 EoT-PGD-20 VMI-FGSM AutoAttack
Standard 92.24 ± 0.00 8.37 ± 0.00 0.11 ± 0.01 0.00 ± 0.00 0.08 ± 0.02 0.03 ± 0.00 0.00 ± 0.00
Standard + NEED 91.30 ± 0.20 18.33 ± 2.29 1.70 ± 0.44 2.34 ± 0.31 4.12 ± 0.19 3.02 ± 0.28 0.29 ± 0.03

PGD-AT [22] 77.30 ± 0.00 52.50 ± 0.00 47.86 ± 0.03 46.13 ± 0.05 46.43 ± 0.03 47.17 ± 0.03 43.09 ± 0.02
PGD-AT + NEED 75.17 ± 0.12 54.31 ± 0.16 50.61 ± 0.11 47.03 ± 0.09 46.63 ± 0.14 47.29 ± 0.24 46.07 ± 0.15

TRADES [47] 79.26 ± 0.00 52.60 ± 0.00 47.30 ± 0.04 45.48 ± 0.03 45.83 ± 0.02 46.76 ± 0.02 42.06 ± 0.02
TRADES + NEED 81.77 ± 0.04 53.42 ± 0.07 48.26 ± 0.07 45.87 ± 0.16 45.92 ± 0.05 47.63 ± 0.06 47.77 ± 0.24

MART [38] 76.15 ± 0.00 51.10 ± 0.00 44.88 ± 0.03 42.44 ± 0.03 42.86 ± 0.06 44.01 ± 0.02 38.58 ± 0.02
MART + NEED 76.12 ± 0.12 51.60 ± 0.08 45.58 ± 0.06 43.90 ± 0.04 44.07 ± 0.08 44.34 ± 0.11 43.58 ± 0.07

FAT [48] 83.65 ± 0.00 50.42 ± 0.00 44.73 ± 0.09 42.73 ± 0.03 42.84 ± 0.06 43.35 ± 0.04 38.03 ± 0.02
FAT + NEED 82.65 ± 0.19 54.18 ± 0.30 47.76 ± 0.12 43.80 ± 0.19 45.62 ± 0.28 46.88 ± 0.23 43.61 ± 0.10

Table 4. Computational cost (ms) of different methods on on
ResNet-18 backbone and CIFAR-10 dataset. Experiments are
conducted on a single NVIDIA RTX A6000. Lower results of
each row are set in bold.

Evaluation Process Max-average AIMER

Single sample

FGSM 3.0964 ⇔100 2.4472 ⇔100

PGD-20 1.3540 ⇔101 3.8754 ⇔100

PGD-100 1.1438 ⇔102 1.4013 ⇔101

EoT-PGD-20 2.5308 ⇔101 7.5075 ⇔100

VMI-FGSM 7.3650 ⇔101 1.9740 ⇔101

AutoAttack 1.9590 ⇔103 5.5118 ⇔102

Pre-processing 0.0000 ⇔100 1.0187 ⇔105

Complete evaluation 1.0945 ⇔108 3.0040 ⇔107

the attack and defense of randomized classifiers into a game
and identifies the mixed Nash equilibrium [25]. Despite a
similar framework of game theory, this paper for the first
time studies the unexplored A-D mismatch problem and
has essentially different motivation, purpose, methodology,
and design of experiments from previous work, identifying
a more direct application of theory to realistic problems.
More discussion can be found in Appendix G.
Adversarial robustness of multi-exit neural networks.
multi-exit neural networks for efficient inference [11, 12,
40, 43] and their adversarial robustness have attracted in-
creasing research interest. [16] is the first to adversarially
train an input-adaptive multi-exit neural network; [3] pro-
poses a fast adversarial training method for multi-exit neu-
ral networks with reduced time complexity; [10] employs
knowledge distillation to prompt each exit to produce or-
thogonal results. Unlike previous works, our paper focuses
on the phenomenon of A-D mismatch that reveals the pos-
sible flaws in the evaluation of these works. Compared with
existing techniques like EoT [1] that address the random-
ness in the networks, AIMER pioneers a novel perspective
and a tailored solution for multi-exit neural networks (fur-
ther discussion can be found in Appendix C.1). We believe
that our findings and methodology can provide a more rig-

orous evaluation on the research of multi-exit robustness.
Adversarial training. Adversarial Training (AT) [22] has
greatly advanced in recent years and has become the most
widely researched defense against adversarial attacks. Im-
proved regularization methods like TRADES [47], MART
[38] and FAT [48] seek to achieve a better balance between
accuracy and robustness; Methods like [18, 30] are devoted
to faster AT. As a promising defense method, AT is also
combined with other types of defenses such as feature-level
robustness [6, 19, 39] and input transformation methods
[44]. By default, the finding and methodology in this pa-
per are based on AT-enhanced multi-exit neural networks.

6. Conclusion and Future Work

In this paper, we identify A-D mismatch as another source
of adversarial robustness apart from the intrinsic robust-
ness of multi-exit neural networks. Taking this finding
into consideration, we devise a game-theoretically princi-
pled methodology for the adversarial attack and defense of
multi-exit neural networks: AIMER evaluation with an en-
hanced strength of attack minimizes the mismatch and more
accurately reflects the true adversarial robustness, while
NEED defense under AIMER evaluation can still maxi-
mally confound the attacker with the best defense strat-
egy in the game. The experimental results over different
datasets, attack algorithms, and network architectures fully
demonstrate the effectiveness of the methods.

While there exist several possible limitations in this work
(Appendix H), we believe the problems identified and the
methods proposed in this paper have not been thoroughly
considered and empirically verified before, which provides
a novel perspective for the research of adversarial robust-
ness of multi-exit neural networks. Also, we expect that our
work can serve as a constant reminder for researchers of
adversarial defense methods: when one seeks to prove the

strength of his shield, he must sharpen the blade of offense.
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