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Challenge

Figure 1: GSAPro exhibits excellent robustness for scenes of various scales. In some challenging positions, as indicated by the
blue arrows in the figure, GSAPro can achieve better reconstruction accuracy than the SOTA methods.

Abstract
We propose GSAPro, a Gaussian Splatting based 3D surface recon-
struction framework that exhibits robustness across diverse scales
of scenes. Previous research has leveraged photometric consistency
constraints or prior information as guidance to enhance the recon-
struction accuracy. However, error estimation and noise inevitably
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exist in these priors. Applying a strict geometric filter removes
a large amount of reliable information, resulting in a deteriora-
tion of the quality of guided reconstruction. Regarding possible
errors in the initial guidance, GSAPro can continuously improve
the accuracy of the guidance through a joint optimization strategy.
The Gaussian Branch integrates reliable geometric and color con-
straints, thus providing more accurate geometric parameters for
the Prior Branch compared to its current state guidance parameters.
The Prior Branch, through photometric selection and propagation,
obtains more accurate geometric parameters from the state geo-
metric parameters and rendered parameters. Then GSAPro uses
these parameters to guide the optimization of the Gaussian Branch.
Regarding the problem of noise existing in the guidance, we train
the Semantic Aware Module to predict the noise by utilizing the
image information, thus improving the accuracy. Moreover, we also
introduce a Distillation Module to mitigate the excessive splitting
of Gaussians that is caused by the implementation of additional
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constraints. Experiments demonstrate that our method exhibits
SOTA performance and has stronger robustness against scenes of
different scales.
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1 Introduction
Recently, 3DGS-based surface reconstruction [12, 14, 45] has gradu-
ally become a research hotspot due to its faster training speed and
realistic rendering compared with Nerf-based methods [9, 32, 40].
The most advanced Gaussian Surface Reconstruction (GSR) meth-
ods flatten the Gaussians [12, 14] and introduce multiview photo-
metric consistency [2, 6] to improve the reconstruction accuracy,
which achieves extremely high accuracy on the small object [15]
dataset. When generalizing them to more complex scenes [39],
where the camera pose arrangements are disordered and the scene
sizes vary significantly, the reconstruction quality drops noticeably.

Using the photometric consistency loss based on Normalized
Cross Correlation(NCC) cost as a supervision [2, 6, 9] has many
issues. First of all, it is not like depth, which is a clear optimization
target that allows the depth loss to be made as close to zero as
possible. In accurate regions, the NCC cost may be high because
of illumination changes, and in noisy regions, it can be extremely
low. Especially in the edge and high-frequency regions, the NCC
cost usually cannot be used to effectively distinguish adjacent fore-
ground and background pixels. Inaccurate supervision will degrade
detail reconstruction accuracy. A high-threshold geometric filter
can identify noise but has severe false-positive issues (Figure 2). Mis-
labeled regions are crucial for improving Gaussians’ reconstruction
accuracy (Table 3).

Using pre-computed information as priors to guide 3DGS or
Nerf optimization is a common approach [5, 13, 33, 44]. It cuts
computational load and is highly robust. However, the priors also
contain noise, and the estimation fails to effectively utilize the
global information that Gaussians can provide for self-improvement.
The results reconstructed by these algorithms generally tend to be
oversmooth.

Regarding the problem of errors existing in the pre-computed
and initial guidance, the guidance used by GSAPro can be self-
updated through the interaction between rendering and numerical
calculation. Regarding the noise existing in the guidance, GSAPro
can accurately identify it. In addition, regarding the problem of ex-
cessive splitting caused by the introduction of additional guidance,
GSAPro adopts Distillation [8] to suppress it.

Specifically, GSAPro, which is composed of a Gaussian Branch
and a Prior Branch, adopts a joint optimization strategy. The Gauss-
ian Branch periodically provides the Prior Branch with the geo-
metric parameters obtained from the rendering of Gaussians. The
Prior Branch will compare the geometric parameters in its current
state with the new parameters rendered by the Gaussian Branch.
It will record the parameters that can minimize the photometric
consistency loss among them, and attempt to find better parameters
for the surrounding areas through the PatchMatch propagation.
Eventually, the optimal parameters are obtained to replace the state
parameters of the Prior Branch and guide the optimization of the
Gaussian Branch.

Since the Prior Branch adopts the photometric criterion and
propagation, a large amount of noise exists in the output optimal
parameters. Directly using noisy priors degrades the reconstruction
accuracy. To address this issue, we create a dataset named Blend-
edPM based on the BlendedMVS dataset and train our Semantic
Aware Module on it. This module incorporates image semantic
information and can mark the noisy regions in the priors output by
the Prior Branch more efficiently than the geometric filter. In addi-
tion, GSAPro also utilizes the Distillation Module to periodically
remove the unimportant Gaussians in the scene, so as to ensure
computational efficiency.

In general, our main contributions are as follows:
• The joint optimization strategy, where the Gaussian Branch

and the Prior Branch assist each other to improve accuracy and
completeness.

• The BlendedPM dataset, which has 61,896 pairs of data.
• The Semantic Aware Module, which can effectively mark the

regions that do not conform to the image semantics, has a strong
generalization ability across different datasets.

Experiments conducted on DTU and BlendedMVS datasets show
that our method has SOTA performance and exhibits stronger ro-
bustness to scenes of different scales.

Image Propagated Depth GT Depth NCC Cost

Geometric Filter (Low) Geometric Filter (High) Ours GT Label

Figure 2: Comparison of Noise Filters. The noise in the prop-
agated depth is shown by the GT label, which can not be
filtered by NCC cost. Low-threshold geometric filters strug-
gle to identify these noises, while high-threshold ones cause
many false positives. Still, these positions matter for guid-
ing Gaussian optimization. White pixels represent correctly
identified positions, while red ones represent incorrectly
identified areas.
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Figure 3: Method overview. The GSAPro adopts the joint optimization strategy. The Prior Branch maintains a set of state
parameters during the optimization, and the accuracy of these parameters can be self-improved. The Prior Branch obtains
more accurate optimal geometric parameters from the rendering results of the Gaussian Branch and its own state parameters
through selection and propagation based on photometric consistency, and then uses these more accurate parameters as the
new state parameters. Since propagation is used in the Prior Branch, a large amount of noise inevitably exists. We construct
the BlendedPM dataset and train our Semantic Aware Module on it, whose core is to use the Multi-resolution Residual U-net
to predict the locations of noises. Finally, the denoised reliable depth will be used to guide the optimization of the Gaussian
Branch. In addition, we also introduce the Distillation module to alleviate the excessive splitting of Gaussians caused by the
introduction of additional constraints.

2 Related Work
2.1 Multi View Consistency
The Multi-View Stereo (MVS) methods [10, 21, 29, 30, 38] based
on feature matching have the characteristics of high robustness,
fast reconstruction speed, as well as a complete and stable pipeline.
Among them, the PatchMatch-based algorithm [17, 29, 31, 37] esti-
mates a depth map for each view. It is characterized by fast speed
and relatively high completeness. Since PatchMatch still uses the rel-
atively local criterion of photometric consistency, its performance
will degrade in scenarios such as lighting changes, shadows, non-
Lambertian objects, and weak texture regions. Therefore, both tradi-
tional methods and deep learning-based methods [1, 11, 20, 36, 47]
attempt to increase the receptive field to improve matching perfor-
mance.

The PatchMatch-based method [29, 37] outperforms the 3DGS-
based method in terms of the speed of acquiring geometric priors.
However, in terms of the completeness of the scene and the ac-
curacy of object edge reconstruction, it performs worse than the
globally optimized 3DGS-based method. In addition, when using
the PatchMatch-based method to guide the GSR, the problem of
excessive noise urgently needs to be solved. For the patches cor-
responding to adjacent foreground and background pixels located
at the edges of objects, their Normalized Cross Correlation (NCC)
generally exceeds the threshold. This makes it impossible for Patch-
Match to distinguish between the foreground and the background
through NCC, thus resulting in the emergence of a large amount

of noise. The introduction of such inaccurate supervision [34] will
lead to the degradation of the reconstruction accuracy.

2.2 Gaussian Surface Reconstruction
Given the similarities between NeRF [24, 25] and 3DGS [16, 41, 43],
many ideas from the NeRF field [18, 22, 26, 27, 35] can be easily
transplanted into 3DGS to improve the reconstruction accuracy.
In terms of Gaussian representation, [3, 23, 42, 48] combine 3DGS
with an SDF which is more like using 3DGS to replace the function
of Neuralangelo’s [19] proposal net to guide the sampling position.
However, the computational time is much longer than that of 3DGS.
[12, 14] flatten the Gaussians, which ensure the consistency un-
der different viewpoints. These methods inherit the fast training
speed of 3DGS and achieve good geometric reconstruction accuracy,
gradually becoming the mainstream approach in GSR.

Incorporating geometric constraints into GSR can significantly
enhance the reconstruction accuracy. For example, the methods
in [2, 6, 7] introduce multiview consistency loss, and have achieved
extremely excellent reconstruction results. These algorithms in-
crease the computational load and encounter the degradation of
reconstruction quality in complex scenarios [39]. NCC-based pho-
tometric consistency can only serve as an evaluation metric and
cannot, like depth loss, point to an accurate direction for optimiza-
tion. Because of illumination changes, the NCC cost in regions with
accurate information may be considerably high; in contrast, the
NCC cost in noisy regions can be incredibly low. Therefore, there is
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usually a lot of noise in the NCC cost. Some other methods [5, 44]
use additional algorithms to calculate priors, such as depth maps,
and then utilize these priors to constrain the optimization. However,
since prior information often contains a large amount of noise, it
can cause the reconstructed details to become blurred. GaussianPro
[4] adopts PatchMatch to densify the Gaussians to improve the
rendering. It uses NCC as a criterion, filters out reliable points from
the geometric information rendered by GSR, and adds new Gaus-
sians at these positions. However, it lacks continuous geometric
loss guidance, all the candidates of PatchMatch are derived from
the inaccurate rendering results, and the efficiency of the geomet-
ric filter is unstable. Moreover, it also has to face the previously
mentioned issues regarding the use of NCC.

3 Method
Section 3.1 describes the Gaussian representation used by GSAPro
and the Distillation Module integrated from [8]. Section 3.2 de-
scribes how the Prior Branch updates the state parameters. Sec-
tion 3.3 describes the construction of the BlendedPM dataset and
the training process of the Semantic Aware Module.

3.1 Gaussian Branch
The Gaussian Branch adopts the same rasterizer as [2], which uses
flattened Gaussians {𝐺𝑖 |𝑖 = 1, · · · , 𝑁 } to represent the scene. For
each pixel, the rasterizer uses volumetric alpha blending to combine
the alpha-weighted colors obtained from all Gaussians sorted by
depth:

𝐶 =
∑︁
𝑖∈𝑁

𝑇𝑖𝛼𝑖𝑐𝑖 , 𝑇𝑖 =

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ), (1)

where 𝑐𝑖 is the view-dependent color represented by spherical har-
monic coefficients, 𝛼𝑖 is calculated by multiplying 𝐺2𝐷

𝑖
and its

opacity 𝑜𝑖 . The 𝐺2𝐷
𝑖

can easily be derived from 𝐺𝑖 according to the
covariance matrix and the Gaussian center position [16].

In order to provide geometric parameter candidates for the Prior
Branch, first of all, we need to render the depth and normal map.
The normal map 𝑁𝑔𝑠 under camera coordinate is obtained through
alpha blending:

𝑁𝑔𝑠 =
∑︁
𝑖∈𝑁

𝑅𝑇𝑐 𝑛𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ), (2)

where 𝑛𝑖 is the normal corresponding to the direction of the mini-
mum scale factor of the 𝐺𝑖 under the world coordinate system, 𝑅𝑐
is the rotation from the camera to the world. Follow the [2], the
unbiased depth 𝐷𝑔𝑠 is derived from the distance map 𝐷𝑖𝑠𝑡𝑔𝑠 :

𝐷𝑖𝑠𝑡𝑔𝑠 =
∑︁
𝑖∈𝑁

𝑑𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1−𝛼 𝑗 ), 𝑑𝑖 =

(
𝑅𝑇𝑐

(
𝑡𝐺𝑖

− 𝑡𝑐
) )𝑇 (

𝑅𝑇𝑐 𝑛𝑖

)
, (3)

where 𝑑𝑖 is the distance from the camera center 𝑡𝑐 to the 3D plane
parameterized by the normal 𝑛𝑖 and center position 𝑡𝐺𝑖

of 𝐺𝑖 . The
depth map 𝐷𝑔𝑠 can be determined from the 𝐷𝑖𝑠𝑡𝑔𝑠 and 𝑁𝑔𝑠 :

𝐷𝑔𝑠 (𝑝) =
𝐷𝑖𝑠𝑡𝑔𝑠 (𝑝)
𝑁𝑔𝑠 (𝑝)𝐾−1𝑝

, (4)

where 𝑝 = [𝑢, 𝑣]𝑇 indicates the pixel position on the image plane,
𝐾 is the intrinsic matrix, 𝑝 is the homogeneous representation of 𝑝 .

The rendered geometric parameters 𝐻𝑦𝑝𝑜𝑔𝑠 that are provided to
the Prior Branch as candidates are defined as follows:

𝐻𝑦𝑝𝑜𝑔𝑠 (𝑝) = [𝑁𝑔𝑠 (𝑝), 𝐷𝑖𝑠𝑡𝑔𝑠 (𝑝)] . (5)

Distillation Module. The Gaussian Branch will lead to the ex-
cessive splitting of the Gaussians in order to fit the additional depth
constraints (Table 3). In order to make the training of the Gaussian
Branch more efficient, we have also incorporated the simplification
strategy from [8] into the Gaussian Branch. After a certain number
of iterations, the maximum value of 𝑇𝑖𝛼𝑖 in each view where a spe-
cific Gaussian 𝐺𝑖 participates in rendering is assigned to 𝐺𝑖 as its
contribution. Then, we normalize the obtained weights to the range
of (0,1) and calculate a Cumulative Distribution Function. Next, we
remove the Gaussians that contribute the least in the bottom 1%
of the CDF. Experiments show that the 1% of Gaussians with the
smallest CDF contributions account for 50% of the total number
(Figure 9).

Optimization Loss. The loss function for the Gaussian Branch
optimization is:

𝐿𝑔𝑠 = 0.8 ∗ 𝐿𝑐𝑜𝑙𝑜𝑟 + 0.2 ∗ 𝐿𝑆𝑆𝐼𝑀 + 100 ∗ 𝐿𝑠𝑐𝑎𝑙𝑒 + 𝐿𝑔𝑒𝑜 , (6)

𝐿𝑠𝑐𝑎𝑙𝑒 = |min(𝑠1, 𝑠2, 𝑠3) |1, (7)

𝐿𝑔𝑒𝑜 = 𝑀𝑒𝑎𝑛(𝑇𝑎𝑛ℎ(𝐴𝑏𝑠 (𝐷𝑔𝑠 − 𝐷𝑠𝑒𝑚
𝑝𝑏

))), (8)

where 𝐿𝑐𝑜𝑙𝑜𝑟 and 𝐿𝑆𝑆𝐼𝑀 are the L1 and SSIM loss between the
rendered image and the GT,𝐿𝑠𝑐𝑎𝑙𝑒 is the regularization term used for
flattening the Gaussian, 𝐿𝑔𝑒𝑜 is the difference between the filtered
depth𝐷𝑠𝑒𝑚

𝑝𝑏
by Semantic Aware Module and the depth𝐷𝑔𝑠 rendered

by the Gaussian Branch.

3.2 Prior Branch

Initial State Final State Diff Mask

Figure 4: Changes in the state parameters of the Prior Branch.
The first two columns display the normal maps of the state
parameters in the initial state and at the end of the optimiza-
tion. The Diff mask marks the regions where the final state
parameters are superior to the initial state parameters.
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Figure 5: Visualization results of the noise identified by the Semantic Aware Module. The network is trained on the BlendedPM
dataset and tested on the BlendedMVS and DTU datasets. White pixels represent correctly identified positions, while red ones
represent incorrectly identified areas.

The Prior branchmaintains the state parameters𝐻𝑦𝑝𝑜𝑝𝑏 through-
out the optimization (Figure 4). During the iteration, it continuously
selects the optimal solution from the output𝐻𝑦𝑝𝑜𝑔𝑠 of the Gaussian
Branch and its own state parameters 𝐻𝑦𝑝𝑜𝑝𝑏 using the NCC cost
as the criterion. Then, it attempts to propagate its parameters to
the surrounding areas to obtain more accurate geometric informa-
tion 𝐻𝑦𝑝𝑜𝑜𝑝𝑡 . After denoising by the Semantic Aware Module, this
information will be used to guide the optimization of the Gaussian
Branch.

Before the optimization begins, the state parameters 𝐻𝑦𝑝𝑜𝑝𝑏 of
the Prior Branch are randomly initialized. During optimization, the
Prior Branch will continuously update its state parameters 𝐻𝑦𝑝𝑜𝑝𝑏 .
First, the Prior Branch needs to select parameters that are superior
to the current state 𝐻𝑦𝑝𝑜𝑝𝑏 from candidates sourced from various
ways through the Ncc Cost 𝐸𝑁𝐶𝐶 . The sources of candidates are
as follows: 1. 𝐻𝑦𝑝𝑜𝑔𝑠 rendered from the Gaussian Branch; 2. the
state parameters 𝐻𝑦𝑝𝑜𝑝𝑏 of the Prior Branch itself; 3. 𝐻𝑦𝑝𝑜𝑝𝑒𝑟𝑡𝑏
generated by adding random noise to the state parameters 𝐻𝑦𝑝𝑜𝑝𝑏 .
Adding perturbations is a commonly used strategy in MVS to help
escape local optima [10, 28, 30, 37].

Next, we use the NCC cost 𝐸𝑁𝐶𝐶 as a criterion to select a param-
eter 𝐻𝑦𝑝𝑜𝑚𝑖𝑑 from the candidates that can minimize the 𝐸𝑁𝐶𝐶 :

𝐻𝑦𝑝𝑜𝑚𝑖𝑑 (𝑝) = argmax
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

𝐸𝑁𝐶𝐶 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒), (9)

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈ {𝐻𝑦𝑝𝑜𝑔𝑠 (𝑝), 𝐻𝑦𝑝𝑜𝑝𝑏 (𝑝), 𝐻𝑦𝑝𝑜𝑝𝑒𝑟𝑡𝑏 (𝑝)}. (10)

Next, we use the PatchMatch technique to perform three iterations
on 𝐻𝑦𝑝𝑜𝑚𝑖𝑑 , aiming to propagate the reliable regions to the sur-
rounding areas to obtain the optimal parameters 𝐻𝑦𝑝𝑜𝑜𝑝𝑡 . The
𝐻𝑦𝑝𝑜𝑜𝑝𝑡 will be used to replace the state parameters 𝐻𝑦𝑝𝑜𝑝𝑏 of

the Prior Branch, and serve as the candidate for the next iteration.
Then,𝐻𝑦𝑝𝑜𝑜𝑝𝑡 is converted into depth𝐷𝑝𝑏 according to Eqn 4.𝐷𝑝𝑏

together with the corresponding 𝐸𝑁𝐶𝐶 map is taken as the input
of the Semantic Aware Module.

3.3 BlendedPM and Semantic Aware Module
Since the Prior Branch employs the PatchMatch-based technique,
it is inevitable that incorrect information will be propagated (Sec-
tion 2.2). Such errors cannot be identified through photometric
consistency. When using a strict geometric filter, the noise at some
edge areas still cannot be detected, and a large number of false
positives will occur (Figure 2). The geometric information of these
false-positive regions is crucial for improving the accuracy of the
Gaussian Branch (Table 7). These regions may be wrongly marked
as noises due to the relatively strict reprojection error or the small
number of times they are observed.

We found that given an image and the output 𝐷𝑝𝑏 of the Prior
Branch, the human can easily identify which regions are incor-
rect. Therefore, we attempt to use a neural network to identify the
regions in the 𝐷𝑝𝑏 that do not conform to the image semantics.

To this end, we created the BlendedPM dataset based on the
BlendedMVS [39] dataset. We utilized the PatchMatch and Propaga-
tion module in the Prior Branch to process each BlendedMVS image,
thereby generating the corresponding 𝐷𝑝𝑚 and 𝐸𝑁𝐶𝐶 cost map
𝐶𝑜𝑠𝑡𝑝𝑚 . It contains 61,896 groups of data. Each group contains the
depth map 𝐷𝑝𝑚 after 2 to 5 PatchMatch iterations with a randomly
initialized 𝐻𝑦𝑝𝑜 , the corresponding cost map 𝐶𝑜𝑠𝑡𝑝𝑚 , the corre-
sponding GT uncertainty label 𝐿𝑎𝑏𝑒𝑙𝑝𝑚 , the corresponding RGB
image 𝐼 and the GT depth 𝐷𝑔𝑡 from BlendedMVS. We generate the
GT uncertainty labels 𝐿𝑎𝑏𝑒𝑙𝑝𝑚 based on the differences between
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Figure 6: Visualization results comparison with SOTA methods on BlendedMVS dataset.

the GT depth 𝐷𝑔𝑡 and the PatchMatch depth 𝐷𝑝𝑚 :

𝐿𝑎𝑏𝑒𝑙𝑝𝑚 =
𝐴𝑏𝑠 (𝐷𝑝𝑚 − 𝐷𝑔𝑡)
𝑚𝑎𝑥 (𝐷𝑝𝑚) · (𝐶𝑜𝑠𝑡𝑝𝑚 < 0.35) > 0.005. (11)

This formula means that we select the positions where the NCC
cost is less than 0.35 but the relative depth error is greater than
0.5% as the positive examples that need to be predicted.

Since most of the regions can be filtered out by 𝐶𝑜𝑠𝑡𝑝𝑚 , we
focus our task on identifying the noise that is very difficult to filter.
Next, we use a multiresolution residual U-Net to predict the error
regions. The inputs contain the RGB image 𝐼 , the normalized depth
map 𝐷 𝑓 𝑖𝑙𝑡𝑒𝑟

𝑝𝑚 filtered by 𝐶𝑜𝑠𝑡𝑝𝑚 < 0.35, and the 𝐸𝑁𝐶𝐶 cost map
𝐶𝑜𝑠𝑡𝑝𝑚 , while the output is a set of multiresolution uncertainty
maps 𝑈𝑛𝑐𝑒𝑟𝑡 , which are used to indicate the degree of difference
from the image semantics per pixel 𝑦𝑝 .

We use weighted BCE loss as the loss function of the Semantic
Aware Module:

𝐿𝑠𝑎 = −
𝑛∑︁
𝑖=1

𝑤𝑝𝑦𝑝 log(𝑦𝑝 ) + (1 −𝑤𝑝 ) (1 − 𝑦𝑝 ) log(1 − 𝑦𝑝 ), (12)

where 𝑦𝑝 ∈ [0, 1] is the Semantic Aware Module output to indicate
if 𝑝 is a noise pixel, 𝑦𝑝 is the GT label of the pixel 𝑝 (if 𝑦𝑝 = 1, it is
the case that needs to be identified),𝑤𝑝 is used to control the weight

of this sample in the overall BCE loss. Since the regions that need to
be identified usually account for a relatively small proportion, we
use the weighted BCE loss to balance the influence of positive and
negative samples on the network training. For positive samples,
we use the ratio of the number of positive and negative samples in
each case as𝑤𝑝 . For negative samples, we use the reciprocal of this
ratio as𝑤𝑝 .

Therefore, the depth 𝐷𝑠𝑒𝑚
𝑝𝑏

used to guide the Gaussian Branch is
ultimately defined as:

𝐷𝑠𝑒𝑚
𝑝𝑏

= 𝐷𝑝𝑏 · (𝑈𝑛𝑐𝑒𝑟𝑡 < 0.5). (13)

After the training is completed, we obtain the depth map by ren-
dering from the Gaussian Branch. Then, we use DepthFusion to
generate a point cloud for evaluation or TSDF Fusion to generate a
mesh model.

4 Experiments
4.1 Experimental Setup
We conduct experiments on the DTU [15] dataset and the more
challenging BlendedMVS [39] dataset. The scene sizes in the Blend-
edMVS dataset vary greatly, and the distribution of camera poses
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Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Robust Gaussian Surface Reconstruction with Semantic Aware Progressive Propagation MM ’25, October 27–31, 2025, Dublin, Ireland.

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Base Full – Sem + Geo Full - Sem FullFull - DistilBase + Distil

0.0 0.2

Figure 7: Visualization results of the ablation study.

Table 1: Quantitative evaluation of reconstruction with existing SOTA methods.

BlendedMVS DTU

Prec ↑ Recall ↑ F-score ↑ Acc ↓ Comp ↓ Overall ↓ PSNR↑ SSIM↑ CD ↓ Time ↓ PSNR↑ SSIM↑
RadeGS 59.776 73.337 65.632 0.178 0.136 0.157 24.49 0.68 0.69 47min 33.92 0.92
2DGS 66.368 82.927 73.504 0.161 0.102 0.132 26.70 0.77 0.80 33min 33.75 0.91
GaussianPro 67.723 78.978 72.087 0.158 0.117 0.138 27.93 0.82 1.08 21min 34.11 0.93
PGSR 72.764 85.039 78.140 0.144 0.096 0.120 28.62 0.84 0.53 37min 32.65 0.92
GaussianSurf 82.124 90.362 85.985 0.118 0.076 0.097 25.34 0.76 0.88 18min 28.13 0.88
Ours 87.301 93.960 90.267 0.106 0.069 0.088 26.95 0.79 0.52 37min 33.15 0.91

is more complex. We use 15 DTU test scenes as [14] and 17 Blend-
edMVS large scenes for the experiments. We compare GSAPro
with two methods without geometric constraints: 2DGS [14] and
RadeGS [46], one PatchMatch-based method: GaussianPro [4] with
the regularization term used for flattening the Gaussians, and two
most advanced methods that utilize multiview constraints: Gaus-
sianSurf [6] and PGSR [2]. The threshold for fusing the depth maps
together is set to 0.001 for the DTU dataset and 0.05 for the Blend-
edMVS dataset.

Our Semantic Aware Module’s residual U-net has 1.136M param-
eters. The proposed BlendedPM dataset consists of 95 scenes and
61,896 data pairs. For validation, we utilize a total of 3,972 data pairs
from 20 scenes. We use the AdamW optimizer to train the model
for 35 epochs on a single NVIDIA RTX 3090 GPU, which takes
approximately 20 hours. The learning rate is gradually reduced
from 0.001 to 0.0001.

4.2 Noise Identification
We present the visualization (Figure 5) and the numerical analy-
sis (Table 2) results of the identification of stubborn noise by our
method. The Semantic Aware Module is only trained on the Blend-
edPM dataset and directly performed inference on the DTU dataset.
From the visualization results, it can be seen that our method has
excellent robustness. When we remove the Cost 𝐶𝑜𝑠𝑡𝑝𝑚 from the
input of the network (w/o Cost) or do not use the cost 𝐶𝑜𝑠𝑡𝑝𝑚 to
filter the input depth 𝐷𝑒𝑝𝑡ℎ𝑝𝑚 (w/o Cost Filter), there will be a

Table 2: Numerical comparison of our Semantic Aware Mod-
ule’s settings and with geometric filter.

BlendedMVS DTU (without training)

Prec ↑ Recall ↑ F-score ↑ Prec ↑ Recall ↑ F-score ↑
geo filter high 34.302 72.989 44.035 20.433 84.425 31.114
geo filter low 64.653 12.523 18.173 68.408 16.989 24.442
w/o cost 49.429 92.765 64.190 56.524 74.914 63.509
w/o cost filter 68.418 75.920 71.778 67.882 58.999 62.075
full 72.042 75.400 73.515 73.930 57.398 63.637

large number of false positives. This is because not providing the
additional constraints is equivalent to increasing the training dif-
ficulty of the network. The network outputs the detection results
solely based on the depth and image information. Therefore, the
performance is inferior to that of the complete full model.

We also compare the detection efficiencywith the geometric filter.
We use the minimum resolution of the Depth Fusion as the strict
threshold and use a value that differs by 0.5% from the maximum
depth of the GT depth as the loose threshold. The number of support
points is 3. When a geometric filter with a high threshold is used for
detection, a large number of false positives occur. However, when a
geometric filter with a lower threshold is used, noise regions cannot
be detected.
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4.3 Reconstruction
We report the visual (Figure 6 and 8) and numerical (Table 1) com-
parison results between GSAPro and various SOTA algorithms on
the BlendedMVS and DTU datasets. Our algorithm has achieved
the same performance as the SOTA algorithms in the DTU scenes.
Moreover, in the more challenging BlendedMVS dataset, both the
reconstruction accuracy and completeness of our GSAPro are supe-
rior to all existing SOTA algorithms.

GaussianSurfel PGSR Ours

Figure 8: The visualization comparison on DTU dataset. The
areas in the box are difficult-to-reconstruct regions.

In complex scenes, the methods [2, 6] that utilize multiview con-
sistency significantly outperform other methods [14, 46] in terms
of both reconstruction accuracy and completeness. These meth-
ods require calculating the NCC between the rendered image and
the auxiliary views during each iteration. Due to the instability
of the NCC and the fact that some areas of the scene may not be
rendered well, which affects the multiview consistency calculation,
there will often be large geometric errors in certain parts of the
scene. GSAPro directly uses reliable depth denoising by the Se-
mantic Aware Module to guide the optimization of the Gaussian
Branch, which makes the reconstruction more stable. Moreover, the
accuracy of the state parameters stored in the Prior Branch keeps
increasing, thus making the guidance information more accurate
and complete.

4.4 Ablation Study

Table 3: Quantitative results of the ablation study for GSAPro.
Since the number of points involved in the evaluation will
reach 30M, a slight numerical improvement can signify a
substantial enhancement in details.

Prec ↑ Recall ↑ F-score ↑ Avg Gaus Improve ↑
Base 71.540 84.587 77.277 1,161,484 0%
Base + Distil 69.426 82.315 75.045 354,006 -5.58%
Full - Sem + Geo 85.823 93.295 89.173 766,807 26.80%
Full - Sem 86.339 93.647 89.616 968,923 27.69%
Full - Distil 87.442 94.003 90.354 2,021,544 29.88%
Full 87.301 93.960 90.267 880,797 29.06%

We conduct the ablation study on BlendedMVS to better illustrate
the functions of each component of our GSAPro. For the visual-
ization results, please refer to Figure 7. And for the quantification
results, please refer to Table 3.

Full - Distil Full Full - Distil Full

0.0

0.7

Figure 9: The difference between the Gaussians and the GT
point cloud. The Gaussians with lower weights that are re-
moved by Distillation usually appear in the regions far from
the GT surface.

Base is the baseline of our GSAPro, which only uses the ras-
terizer of [2] and the RGB Loss. Distil is the Distillation module
from [8] that has been integrated into GSAPro to reduce the num-
ber of Gaussians. When the Distillation module is used to prune
the Gaussians, the number of Gaussians is significantly reduced,
the training speed is improved, and there is basically no loss in
accuracy (Full-Distil vs Full).

Full-Sem+Geo replaces the Semantic Aware Module with a
strict geometric filter. Since it is difficult for the geometric filter to
filter out the noise regions and it will mark a large number of false
positive areas, the reliable depth-guided information in a single
view is reduced. As a result, the final reconstruction result is inferior
to that of GSAPro and even worse than directly using photometric
consistency for filtering.

From the comparison between Full-Sem and Full, we can see
that the Semantic Aware Module can effectively improve the preci-
sion of the detail reconstruction.

It should be noted that, due to the large size of the scene, the
reconstruction quality of most parts is quite similar, and the propor-
tion of high frequency areas and edges with differences is relatively
small. Therefore, the numerical differences will not be that obvious.

5 Conclusion
We introduce GSAPro, a novel Semantic Aware surface reconstruc-
tion approach, which exhibits robustness across diverse scales of
scenes. Regarding the issue that there may be errors in the guid-
ance information, GSAPro proposes a joint optimization strategy
to simultaneously enhance the accuracy of the state parameters in
the Prior Branch and the reconstruction accuracy of the Gaussian
Branch. Regarding the problem that the noise existing in the multi-
view NCC cost and the pre-computed priors information cannot
be accurately identified by the geometric filter, we conduct the
training of the Semantic Aware Module on our BlendedPM dataset.
This module is able to efficiently detect those noisy regions, and
consequently, it remarkably improves the reconstruction accuracy
of the details in the Gaussian Branch. Experiments on the DTU
dataset demonstrate that our method achieves the SOTA perfor-
mance. On the more challenging BlendedMVS dataset, GSAPro
shows its performance superiority.
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