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Abstract

Despite significant advances in the field of specular high-
light removal in recent years, existing methods predomi-
nantly focus on natural images, where highlights typically
appear on raised or edged surfaces of objects. These high-
lights are often small and sparsely distributed. However, for
text images such as cards and posters, the flat surfaces re-
flect light uniformly, resulting in large areas of highlights.
Current methods struggle with these large-area highlights
in text images, often producing severe visual artifacts or no-
ticeable discrepancies between filled pixels and the original
image in the central high-intensity highlight areas. To ad-
dress these challenges, we propose the Hierarchical Adap-
tive Filtering Network (HAFNet). Our approach performs
filtering at both the downsampled deep feature layer and
the upsampled image reconstruction layer. By designing
and applying the Adaptive Comprehensive Filtering Module
(ACFM) and Adaptive Dilated Filtering Module (ADFM) at
different layers, our method effectively restores semantic in-
formation in large-area specular highlight regions and re-
covers detail loss at various scales. The required filtering
kernels are pre-generated by a prediction network, allowing
them to adaptively adjust according to different images and
their semantic content, enabling robust performance across
diverse scenarios. Additionally, we utilize Unity3D to con-
struct a comprehensive large-area highlight dataset featur-
ing images with rich texts and complex textures. Experimen-
tal results on various datasets demonstrate that our method
outperforms state-of-the-art approaches.

1. Introduction
Specular highlights are commonly encountered in our

daily lives and often appear in photographs. For instance,
when photographing an ID card, specular highlights may
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Figure 1. Specular highlight removal results on text images. (a)(c)
Specular highlight images. (b)(d) Highlight removal results using
our proposed method.

obscure important information. Additionally, images with
highlights can interfere with various computer vision tasks
such as image segmentation [37], text detection [18], and
object detection [21]. Consequently, specular highlight re-
moval is a critical and challenging task in computer vision.

Traditional methods for highlight removal predomi-
nantly analyze the physical and statistical properties of im-
ages, employing a variety of techniques such as color space
analysis [32], optimization [20], filtering [43], polarization
information [34, 38], and illumination estimation [13, 22].
However, these methods often perform poorly on text im-
ages, leading to issues such as color tone deviation, incom-
plete highlight removal, and black color block. The primary
limitation of these approaches is their inability to capture
high-level semantic information and leverage useful infor-
mation from both weak highlight regions and non-highlight
regions.



Deep learning-based methods for specular highlight re-
moval have achieved remarkable results in medical im-
ages [7], natural object images [46], and specific object
images [47, 48, 50]. These highlights are typically small,
sparse, and similar in color to the light source. However,
for text images with rich texts and complex textures (e.g.,
cards and posters), existing methods often perform poorly,
leading to large area detail loss, or color distortion. Besides
method limitations, a significant issue is the lack of datasets
containing text images with large-area highlights.

To address the aforementioned issues, we have con-
structed a large-area specular highlight dataset (LSH) fea-
turing images with rich texts and complex textures. Each
image pair includes a highlight image and its highlight-free
image, covering a variety of items such as bank cards, game
cards, and posters. The highlights in these images vary in
shape, intensity, and coverage area. We also propose a novel
method for removing large-area highlights from images. By
designing corresponding filtering modules at different fea-
ture layers, we aim to achieve a larger receptive field to
recover semantic information under extensive strong high-
lights while better restoring detailed information, as shown
in Figure 1.

When features are downsampled to the deep feature
layer, the resulting features contain rich high-level semantic
information. We propose to apply the Adaptive Compre-
hensive Filtering Module (ACFM) at this layer, which not
only removes large-area highlights but also effectively re-
covers semantic information. In ACFM, we predict a small
kernel to adaptively preserve local information, while si-
multaneously predicting a large kernel to capture a larger re-
ceptive field. Additionally, to address the limitation of large
kernels in covering global regions, we utilize fast Fourier
transform to process them in the frequency domain, thereby
achieving a global receptive field. However, predicting
large kernels requires significant parameter consumption.
To address this, we introduce a Parameter-Optimized Fil-
tering Module (POFM), which reduces the number of pa-
rameters from ck2 to 2ck using outer product operations.
This reduction allows us to achieve a large receptive field
with fewer parameters. To better refine details and reduce
artifacts, we perform the Adaptive Dilated Filtering Mod-
ule (ADFM) at the upsampled image reconstruction layer
to recover detail loss at various scales.

In summary, our contributions are:
• We propose a novel network for specular highlight re-

moval, dubbed HAFNet. This network is effective for
handling large-area specular highlights in text images.

• We propose the Adaptive Comprehensive Filtering Mod-
ule (ACFM), which preserves local structures while ob-
taining a global receptive field, thereby better restoring
the semantic information in highlight regions. Addition-
ally, the Parameter-Optimized Filtering Module (POFM)

maintains a low parameter count. Furthermore, we pro-
pose the Adaptive Dilated Filtering Module (ADFM) to
refine details and reduce artifacts.

• We construct a large-area highlight dataset featuring im-
ages with rich texts and complex textures. The image
pairs are precisely aligned, and non-highlight regions
maintain consistent color tones.

2. Related Work

2.1. Traditional Methods
Early traditional specular highlight removal methods pri-

marily relied on analyzing pixel brightness and color in-
formation in images [30, 33]. The dichromatic reflection
model proposed by [29], significantly contributed to high-
light removal research. Methods based on this model, such
as those in works [3, 27, 43], perform well in handling com-
plex images. Additionally, illumination estimation-based
methods [2, 13] are particularly suitable for complex light-
ing conditions, effectively removing highlights while main-
taining image detail and color consistency. However, these
traditional methods often fail to capture high-level seman-
tic information and do not leverage useful information from
weak highlight and non-highlight areas, frequently result-
ing in illumination residues, black spots, and other visual
artifacts.

2.2. Deep Learning-Based Methods
In recent years, deep learning-based methods for im-

age highlight removal have advanced significantly. Lin et
al. [19] introduced multi-class adversarial losses, enabling
the model to more accurately identify and remove different
types of highlights. Muhammad et al. [25] designed Spec-
Net and Spec-CGAN specifically for facial image highlight.
Wu et al. [40] created a real-world dataset and proposed a
GAN-based highlight removal method. Fu et al. [4] im-
proved model efficiency and accuracy through joint detec-
tion and removal tasks. Hou et al. [9] focused on highlight
removal in text images, incorporating a text detection mod-
ule to ensure text clarity and readability.

Fu et al. [5] used large-scale synthetic data for training
and proposed a three-stage network based on the dichro-
matic reflection model to eliminate highlights while main-
taining color consistency. Wu et al. [41] combined UNet
and Transformer architectures, leveraging Transformer’s
global characteristics and UNet’s local features to enhance
removal accuracy. Hu, Huang, and Wang [10] proposed a
method based on an improved dichromatic reflection model,
and a coarse-to-fine network structure was used to remove
highlights. However, these methods primarily target med-
ical images, natural images, and specific object images.
Their performance on large-area highlight images with rich
texts and complex textures remains unsatisfactory.
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Figure 2. (a) The framework of our HAFNet. Down represents the Down-sampling Block, Up represents the Up-sampling Block and Res
represents the Residual Block. (b) The Adaptive Comprehensive Filtering Module (ACFM). KS and KL are dynamically predicted by the
network as the small and large kernels, respectively. (c) The Adaptive Dilated Filtering Module (ADFM). (d) The Comprehensive Filtering
Kernel Generation Modul (CFKGM). (e) The Dilated Filtering Kernel Generation Modul (DFKGM).

2.3. Kernel Prediction Filtering

kernel prediction filtering is an advanced image process-
ing method where a kernel prediction network dynamically
predicts kernels for each pixel to filter the input image and
generate high-quality output images [11]. In recent years,
this method has seen various optimizations and enhance-
ments in multiple studies [23, 49]. This technology has been
widely applied to various computer vision tasks, including
denoising [15, 24], super-resolution [1, 36, 42], video in-
terpolation [26], image inpainting [8, 17], and shadow re-
moval [6]. The core advantage of kernel prediction filter-
ing lies in its ability to better preserve local structures of
the image and effectively eliminate artifacts. However, it
often faces the challenge of limited receptive fields, lead-
ing to suboptimal performance in some tasks. The method
proposed in this paper employs the strengths of kernel pre-
diction filtering. Furthermore, our approach addresses the
issue of limited receptive fields by employing comprehen-
sive filtering at the deep feature layer.

3. Dataset

3.1. Background

Natural Images. Currently, some publicly available high-
quality natural image highlight datasets, such as SHIQ [4],
PSD [40], and SSHR [5], have been widely used for ex-
perimental training and evaluation. In these images, high-
lights usually appear on protrusions, edges, or folds of the
object’s surface, typically small in area and sparsely dis-
tributed. Networks trained on these datasets are unable to
effectively remove large-area highlights in text images and
fail to recover the information obscured by highlights.
Text Images. Hou et al. [9] introduced three finely anno-
tated text image highlight datasets (RD, SD1, SD2), but they
have some limitations. RD was captured under controlled
conditions by switching lights, and the highlights were gen-
erated by adding a plastic film to the object’s surface rather
than being inherent to the object itself, as shown in the first
row of Figure 3. Collecting high-quality highlight images
requires significant human and material resources due to
manual adjustments of objects and lights. Consequently,
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Figure 3. Example image pairs from the RD, SD1, and SD2
datasets are shown in the first, second, and third rows, respectively.

the dataset size is limited to only 1800 images for train-
ing. Additionally, this dataset features simple lighting con-
ditions and tone deviations between image pairs. As shown
in the second and third rows of Figure 3, SD1 and SD2 are
synthetic datasets where the highlights in the images ex-
hibit simple shapes and straightforward positional distribu-
tion. The highlights in SD1 and SD2 are simply added as
distinct shapes to the images, without simulating realistic
lighting conditions and material properties to produce au-
thentic highlights. Additionally, some image pairs exhibit
severe tone inconsistencies, posing significant challenges
for model training.

3.2. LSH Dataset Construction
We obtained highlight-free images through camera pho-

tography and online downloads. Next, we leveraged
Unity3D’s advanced rendering and designed custom Phys-
ically Based Rendering (PBR) shaders to enable different
shapes and intensities of highlights under various lighting
conditions.

Our approach employs parameterized shader functions
to dynamically adjust PBR parameters—Metallic, Smooth-
ness, and more. Beyond basic PBR, we incorporated ad-
vanced material properties such as Normal Mapping, Am-
bient Occlusion, and Anisotropic Reflection to ensure nu-
anced highlight realism. Additionally, we implemented an
adaptive lighting strategy, adjusting directional lights, point
lights, area lights, and spot lights based on environment-
specific models that simulate real-world illumination sce-
narios. Our pipeline leverages physics-informed lighting
adjustments to generate highlights with high variability. As
shown in Figure 4, this approach allows us to generate a
dataset with realistic highlight effects under various lighting

Figure 4. The collection pipelines of our dataset.

conditions, thereby enhancing the training and generaliza-
tion capabilities of our highlight removal model.

Our dataset contains 13.6k pairs for training and 1.8k
pairs for testing, with each pair consisting of a highlight
image and its highlight-free image. The main types include
bank cards, bus cards, identity cards and posters. Image
pairs are perfectly aligned and have consistent tonal val-
ues in non-highlight regions. Our dataset is characterized
by large highlight areas, rich text information, and complex
textures, with a variety of highlight shapes and intensities.

4. Method
4.1. Framework Overview

The overall pipeline is illustrated in Figure 2 (a). The
input image is downsampled and filtered at the deep feature
layer using the Adaptive Comprehensive Filtering Mod-
ule (ACFM), which removes large-area specular highlights
while restoring semantic information. The kernels required
for ACFM are predicted by a network that takes the original
image as input along with E1 features for guidance. The fil-
tered features are then upsampled to the image level, where
the Adaptive Dilated Filtering Module (ADFM) performs
filtering to refine details and reduce artifacts. The kernels
required for ADFM are predicted by a network, which re-
ceives feature F1 as input, guided by E2.

4.2. Kernel Prediction Filtering for Highlight Re-
moval

To address the issue of visual artifacts commonly pro-
duced by previous methods after removing specular high-
lights, we leverage Kernel Prediction Filtering (KPF) [35].
Artifacts often arise from inaccurate predictions or exces-
sive smoothing. One of the primary design goals of KPF is
to minimize these artifacts. By employing fine-grained lo-
cal structure restoration and dynamic adjustment, KPF ef-
fectively mitigates common artifacts.

The kernel prediction network can dynamically distin-
guish highlight areas of varying intensities, predicting ap-
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Figure 5. The Parameter-Optimized Filtering Module (POFM).

propriate kernels accordingly, as shown in Figure 6 (a). For
non-highlight areas, the network effectively preserves the
original pixels; for strong highlight edge areas, it fully uti-
lizes the surrounding useful pixels; and for highlights of
varying intensities, it performs intelligent processing. The
result of applying kernel prediction filtering to highlight im-
age is shown in Figure 6 (c). While the kernel prediction
filtering demonstrates its advantages in highlight removal,
it also reveals a significant issue. Due to insufficient recep-
tive fields, the network struggles to restore information in
the central regions after removing large-area specular high-
lights.

4.3. Large-Area Highlight Removal
To address the issue of insufficient receptive fields in ker-

nel prediction filtering and the inability to restore semantic
information under large-area highlights, we considered two
intuitive approaches. The first approach involves increasing
the size of the predicted kernel. For example, Niklaus, Mai,
and Liu [26] used neural networks to generate two 41×41
kernels for each output pixel, requiring 26GB of memory
for 1080p video frames due to the quadratic increase in
memory with kernel size, which also significantly compli-
cates training. Figure 6 (d) shows the result of this strat-
egy, where the central region exhibits severe visual artifacts.
This occurs because large kernels can cause uneven filter
responses, resulting in over-processing in some areas and
under-processing in others during highlight removal.

The second approach involves designing a recurrent net-
work that iteratively filters the highlight removal results
multiple times, using the pixels filtered in the previous
round to reconstruct the missing regions. Figure 6 (e) shows
the result of this strategy. The details in the central region
remain unrecovered, and some areas become blurred. This
is mainly because extensive highlight regions disrupt the lo-
cal structure, causing reconstruction errors to accumulate
during the iterative filtering process.

To address the aforementioned challenges, we propose a
filtering strategy at the deep feature layer. This extension al-
lows for a larger receptive field, which not only effectively

removes extensive highlights but also restores semantic in-
formation. However, this strategy has notable limitations:
in prioritizing a larger receptive field, it neglects local infor-
mation, leading to a loss of fine details. Additionally, when
the feature size is large, the predicted kernel fails to fully
cover all essential information, resulting in incomplete fil-
tering. To address these issues, we propose the Adaptive
Comprehensive Filtering Module (ACFM).
Adaptive Comprehensive Filtering Module. As shown in
Figure 2 (b), the ACFM effectively preserves fine-grained
local details crucial for maintaining texture integrity by us-
ing a 3x3 predicted kernel (KS). Simultaneously, the use
of a 15x15 predicted kernel (KL) offers extensive coverage
to handle large-scale highlight regions. Our predicted ker-
nels are generated through the prediction network, which
adaptively adjusts according to different images and their
semantic information, thereby adapting to various scenar-
ios.

When dealing with large-area highlights, a global recep-
tive field is essential for understanding the image and ef-
fectively restoring semantic information obscured by high-
lights. To achieve this, we utilize Fast Fourier Transform
(FFT) to convert features from the spatial domain to the
frequency domain. After processing in the frequency do-
main, we apply the inverse Fourier Transform to convert
the features back to the spatial domain. Processing in the
frequency domain allows us to achieve a global receptive
field that enhances our ability to recover critical semantic
information under large-area highlights. Even in the pres-
ence of large, intense highlights in the central region, the
semantic-level understanding of the image enables the rea-
sonable restoration of information obscured by the high-
lights.

In the ACFM, we propose the Parameter-Optimized Fil-
tering Module (POFM) to reduce the parameter count of the
predicted kernels. We incorporate the concept of separable
kernel estimation to further reduce the parameter count:

Ks(x, y) = k(x, y)1 ⊗ k(x, y)2, (1)

where k(x, y)1 and k(x, y)2 are from K, as shown in Fig-
ure 5. ⊗ represents the outer product operation. Ks(x, y)
is the predicted kernel with size s at feature (x, y). This
method can reduce the number of parameters from s2 to 2s.
Specifically, when we filter at deep feature (x, y):

F (x, y) = Ks(x, y) ∗ P s(x, y), (2)

where ∗ represents the filtering operation. P s(x, y) is the
patch centered at (x, y) with size s in the feature.

The result of using ACFM at the deep feature layer is
shown in Figure 6 (f). Compared to image-level prediction
filtering, our method removes extensive highlights and re-
stores semantic information. Although the main structure
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Figure 6. (a) Highlight images and predicted kernels for different
specular highlight regions. (b) Ground truth (GT). (c) Result after
image-level filtering using KPF [35]. (d) Result after applying
large-kernel filtering. (e) Result from multiple filtering iterations
with a recurrent network. (f) Result after filtering with ACFM at
deep feature layer. (g) Result obtained with our proposed method.

has been recovered, some details are still lost. After remov-
ing strong highlights from central areas, issues such as color
distortion and structural blurring persist.

4.4. Detail Refinement for Highlight Regions
Comprehensive filtering at the deep feature layer cap-

tures high-level semantic information, ensuring more con-
textually coherent restoration of large highlight areas. How-
ever, it has limitations in recovering fine details, potentially
leading to blurring or imprecision. To address this, we pro-
pose incorporating finer-grained filtering at the image re-
construction layer, enhancing detail fidelity in the final out-
put.

We predict the required kernels for filtering at the im-
age reconstruction layer, incorporating CBAM [39] in the
kernel prediction process. By applying attention mecha-
nisms across both channel and spatial dimensions, CBAM
enhances feature maps by emphasizing critical features and
suppressing less relevant ones. This attention-driven refine-
ment is essential for generating accurate adaptive kernels
within the kernel prediction module, enabling precise detail
recovery and producing natural images free from highlight
artifacts.
Adaptive Dilated Filtering Module. Upon observation,
we found that the results after comprehensive filtering often
exhibit missing details at various scales. Inspired by com-
prehensive experiments, as discussed in [16], multi-scale
information is crucial for restoring high-quality images. A
straightforward solution would be to directly predict multi-
scale kernels [23], but this approach incurs additional pa-
rameter and time costs. To address this, we adopt the con-
cept of dilated convolutions [45], expanding each 3×3 pre-
dicted kernel to different scales:

Îi(x) =
∑

t,y=x+lt

Ks
i (t)I(y), (3)

where x and y denote pixel coordinates, where the range
of t is from (−S−1

2 ,−S−1
2 ) to (S−1

2 , S−1
2 ). Ki is obtained

through the DFKGM. and i = 1, 2, 3. l is the dilation fac-
tor, l=i. Then simply fuse these three features through a

convolution:

Ifree = Conv(Concat(Î1, Î2, Î3)), (4)

This enables handling details at different scales while re-
ducing the number of parameters.

4.5. Loss Functions
Adversarial Loss. We adopt the relativistic average ad-
versarial loss, which not only considers the discriminator’s
scores for generated and real images but also their relative
differences.

Ladv = 0.5 · (BCE(σ(D(Ifree)−D(Igt)), y
′)

+ BCE(σ(D(Ifree)−D(Igt)), y)) , (5)

where σ is the sigmoid function, and BCE(∗) measures the
binary cross-entropy. For the generator, (y′, y) is set to
(1, 0), and for the discriminator, it is set to (0, 1). D is our
discriminator. This relative scoring strategy captures sub-
tle differences better, promoting the generation of higher-
quality images.
Perceptual Loss. We use the perceptual loss defined
in [12], utilizing the VGG-19 network pre-trained on the
ImageNet dataset [28]. This loss captures high-level fea-
tures of the images, ensuring that the estimated highlight-
free images retain important content and structural informa-
tion, making the final generated images more semantically
consistent with the original ones. The perceptual loss is for-
mulated as:

Lperc =
1

CiHiWi
∥ϕi(Ifree)− ϕi(Igt)∥1, (6)

where ϕi(·) denotes the features from the i-th layer of the
pre-trained VGG-19 network, and Ci, Hi,Wi are the di-
mensions of the features.
Style Loss. We use the style loss, which calculates the dif-
ferences between the Gram matrices of the generated and
target images, effectively capturing and preserving the tex-
ture.

Lstyle =
∑
i

∥G(ϕi(Ifree))−G(ϕi(Igt))∥1, (7)

where ϕi denotes the features from the i-th layer of the same
pre-trained network used for perceptual loss, and G(·) is the
Gram matrix, which computes the correlations between fea-
ture maps’ channels. This loss helps to recover texture de-
tails lost due to highlights, making the highlight-free images
visually more natural and coherent.

The total loss of our method is defined as:

L = λ1L1 + λ2Ladv + λ3Lperc + λ4Lstyle, (8)

where λ1, λ2, λ3, and λ4 are weight parameters. In our
experiments, we set λ1 = 1, λ2 = 0.1, λ3 = 0.1, and
λ4 = 0.5.
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Figure 7. Visual comparison results on our LSH dataset.

Method LSH RD SD1
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Shen 15.479 0.771 18.705 0.765 18.489 0.855
Yang 11.473 0.405 15.625 0.531 13.890 0.479

TASHR 22.996 0.869 21.474 0.793 24.664 0.917
JSHDR 22.771 0.899 21.546 0.807 21.866 0.891

Wu 24.564 0.907 22.989 0.845 24.324 0.918
TSHR 25.066 0.905 22.793 0.818 25.147 0.930

IDRHR 24.584 0.914 23.903 0.840 24.824 0.938
Ours 26.593 0.937 26.217 0.885 28.952 0.947

Table 1. Quantitative comparison of our method with state-of-the-
art specular highlight removal methods on our LSH, RD [9], and
SD1 [9]. The best results are marked in bold.

5. Experiments
5.1. Implementation Details

We implemented the entire network in PyTorch and
trained it for 100 epochs on a PC equipped with NVIDIA
GeForce GTX 3090. The entire network is optimized using
the Adam optimizer [14]. The initial learning rate is set to
1 × 10−4, with a batch size of 8. The input image size to
our network is consistent with the image sizes in datasets.

5.2. Datasets and Evaluation Metrics
We evaluated our network on three datasets, including

our LSH, RD [9], and SD1 [9]. We adopt two commonly
used metrics in the highlight removal task to quantitatively
evaluate the performance of our method: Structural Similar-
ity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR).

5.3. Comparisons with State-of-the-art Methods
We compared our method with some state-of-the-art

methods: Shen [31], Yang [44], TASHR [9], JSHDR [4],
Wu [40], TSHR [5], IDRHR [10]. Shen and Yang are tra-

ditional methods, while the others are state-of-the-art deep
learning-based methods. For a fair comparison, we used the
publicly available code and the best parameter settings de-
scribed in the papers provided by the authors for training
and evaluation, selecting the best results among them.
Quantitative Comparison. Table 1 presents the quantita-
tive evaluation of our method compared with the aforemen-
tioned methods on three datasets. From the table, we can
observe that our method achieves higher SSIM and PSNR
scores on all three datasets compared to the other methods,
indicating superior performance. Furthermore, the higher
SSIM and PSNR scores in the RD validate the effectiveness
of our method in real-world scenarios. Observing the data
in the table, it is evident that traditional highlight removal
methods perform poorly on our large-area highlight images
compared to learning-based methods.
Qualitative Comparison. Figure 7 shows the visual com-
parison results on our LSH dataset. TASHR [9] and
JSHDR [4] can remove large-area highlights, but they often
produce black patches and illumination residues, as shown
in Figure 7 (b) and (c). Wu [40] can more effectively re-
move large-area highlights, but they often produce color
distortions and other visual artifacts, as shown in Figure 7
(d). TSHR [5] and IDRHR [10] largely avoid some vi-
sual artifacts, but they cannot recover the detailed informa-
tion under highlights, as shown in Figure 7 (e) and (f). In
contrast, our method: (1) generates more natural and high-
fidelity images; (2) effectively restores information in areas
with strong highlights; and (3) recovers finer details in re-
gions where the information under highlights is not com-
pletely lost. Due to space constraints, we provide visual
comparisons for the RD and SD1 datasets in the supple-
mentary material.

To further verify the robustness and generalization ca-
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Figure 8. Visual results for real highlight images.

pability of our method on real images, we compare it with
three recent state-of-the-art methods Wu [40], TSHR [5],
IDRHR [10]. Figure 8 presents highlight removal results
for real highlight images, which were captured using smart-
phones or downloaded from the Internet, and for which
ground truth data is not available. Although we cannot per-
form quantitative comparisons due to the lack of ground
truth, visually, our method effectively removes highlights
while restoring the information obscured by the highlights
and avoiding visual artifacts.

5.4. Ablation Studies
To demonstrate the impact of each component of our

method on the experimental results, we conducted a series
of ablation experiments. We compare our network with four
variants to assess the impact of each component. The vari-
ants are (1) Filtering is not performed at the deep feature
layer, meaning the ACFM is removed; (2) Filtering is not
performed at the image reconstruction layer, meaning the
ADFM is removed; (3) replace ACFM with standard KPF
and (4) replace ADFM with standard KPF. We train the vari-
ants on Our LSH. From the table 2, we can observe: (1) our
HAFNet with all components gets the best results; (2) the
proposed ACFM and ADFM can help improve the perfor-
mance of the network, and the combination leads to the best
performance.

To further investigate the proposed Module, we tested
different Large kernel sizes in ACFM and different pre-
dicted kernel numbers in ADFM. As shown in Table 3, for
the large predicted kernel of ACFM, the larger the size of
the adaptive kernel, the better the performance. The perfor-
mance improvement is significant from k = 11 to k = 15
but less so beyond that, while the parameter amount in-
creases significantly. The use of POFM significantly re-
duces the parameter amount for larger kernels. We predict
3 × 3 kernels and tested different Kenel nums with differ-
ent dilation factors in ADFM, As shown in Table 4. we
balanced computational complexity, model size, and per-
formance, and finally determined the large kernel size for
ACFM as k = 15, and numbers for ADFM as i = 3 with
dilation factors l = i.

Methods PSNR SSIM
Without ACFM 22.017 0.849
Without ADFM 25.711 0.907

Replace ACFM with Standard KPF 25.148 0.912
Replace ADFM with Standard KPF 26.019 0.921

Our HMAFNet 26.593 0.937

Table 2. Quantitative results of ablation study on our LSH.

Kernel Size K=11 K=13 K=15 K=17 K=19
PSNR 25.698 26.284 26.593 26.603 26.611
SSIM 0.929 0.931 0.937 0.933 0.932

Pre-Params(M) 87.228 121.831 162.201 208.338 260.243
Params(M) 15.859 18.743 21.626 24.510 27.394

Table 3. Results of different sizes of large predicted kernels in
ACFM. Predicted kernel parameters without applying POFM. Pre-
dicted kernel parameters in the proposed method.

Kernel nums i=1 i=2 i=3 i=4
PSNR 26.019 26.532 26.593 26.607
SSIM 0.921 0.929 0.937 0.930

Table 4. Results for different predicted kernel numbers in ADFM.

5.5. Limitations
When the highlight area is too large and its intensity

too strong, the lack of reliable information for learning
makes highlight removal challenging. Additionally, when
the highlights are complex, even after removal, accurately
restoring the underlying detail information is difficult, often
resulting in blurriness. Due to space constraints, specific
examples are provided in the supplementary materials.

6. Conclusion
In this paper, we have proposed the HAFNet for high-

light removal. The goal is to address text images with large-
area highlights. We achieved high-fidelity highlight re-
moval results by employing HAFNet. Additionally, we con-
structed a high-quality dataset to facilitate network training
and quantitative evaluation. Image pairs in our dataset are
perfectly aligned and have consistent tonal values in non-
highlight regions. Our dataset includes text images such as
bank cards, posters, etc., characterized by large-area high-
lights with high intensity and containing rich text and com-
plex texture. Extensive experiments demonstrate the state-
of-the-art performance of our method.
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