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Figure 1: Visual comparison results of different methods for illumination-shadow consistency generation of composite images.

ABSTRACT

Recently, since diffusion models show great potential in image
generation, many pretrained diffusion models based image com-
position methods have been proposed for image illumination har-
monization. However, they mainly face two key challenges: 1) the
effective preservation of foreground appearance (i.e., content struc-
ture and texture details, etc); 2) Reasonable generation of the fore-
ground casting shadow. To this end, we propose a novel Image
Ilumination Harmonization Diffusion model called I?HDiffuser
to achieve image illumination harmonization with high-fidelity
foreground appearance and reasonable cast shadows. I*HDiffuser
mainly consists of frequency domain feature enhancement branch
(FDFEB) and illumination-shadow consistency generation branch
(ISCGB). Specifically, FDFEB first introduces the Wavelet Transform
Module (WTM) for decomposing composite image features into
low-frequency (i.e., illumination features, etc) and high-frequency
(i.e., texture and content structure features, etc) components using
the Haar wavelet transform. Then the Multi-Condition Guidance
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Mechanism (M-CGM) is proposed to interact these components as
prior conditions, which are further injected into the ISCGB with
a noise-to-denoise process for guiding high-fidelity content and
background illumination-aware foreground regeneration. Mean-
while, a shadow mask step-wise iterative optimization strategy is
introduced to the ISCGB to explicitly provide a reasonable shadow
generation space for foreground objects. Extensive experiments on
public image harmonization datasets DESOBAv2 and iHarmony4
and real illumination harmonization dataset IH-SG show that the
I’HDiffuser achieves the superiority.
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1 INTRODUCTION

Image composition [1, 4, 37] is a fundamental task and widely
used in computer vision [2, 53, 54, 57, 59] and augmented reality
(AR)[44], which targets combining foreground and background
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scene from different illumination conditions to produce a compos-
ite image. However, the composite image usually has an inharmony
appearance between the foreground and background due to differ-
ent capture conditions, which usually leads to unsatisfactory visual
effect and greatly affect the user sense of reality. Apparently, im-
age illumination harmonization, aiming at achieving the seamless
illumination blending between the foreground object and back-
ground scene of the composite image, is really an important and
challenging task.

Existing deep learning-based image harmonization methods
[2,5,38,9, 12, 13, 18, 24, 29, 30, 33, 36, 41, 45, 46, 50] have devel-
oped various techniques from different perspectives (including
image appearance, illumination, stylization, etc.) to address the
illumination mismatch between foreground and background and
achieved satisfactory results. However, they mainly focus on the
foreground region and rarely consider the potential impact of fore-
ground shadows, resulting in extremely unrealistic composition
results. Recently, since diffusion models [19, 33, 42] show great
potential in generating realistic images, many pretrained diffusion
models based image composition methods [47, 52, 55, 56, 60] have
been proposed for addressing image illumination consistency issues
and achieved remarkable progress.

Among them, the methods [47, 52] use user-specified bound-
ing box to aggregate a foreground object and a background scene
from different illumination conditions to produce a realistic com-
posite image. Similarly, the method [56] designs a two-stage fusion
strategy and leverages the aligned foreground embedding map for
feature modulation within diffusion model to achieve image illu-
mination harmonization task. Besides, the methods [55, 60] take
into account the controllability of foreground content for achieving
image global illumination consistency. However, these methods
still face two key challenges:1) the high-fidelity of local appear-
ance of the foreground (e.g., semantic mismatch of local details);
2) the reasonable and accurate generation of foreground shadows
matching the background illumination conditions.

Given these two key challenges, we propose a novel Image Illumi-
nation Harmonization Diffusion method named I?HDiffuser, which
is capable of achieving image illumination harmonization with the
high-fidelity foreground appearance and reasonable shadows, as
shown in Figure 1. I’HDiffuser consists of the FDFEB providing
strong guidance condition information and the ISCGB generating
predetermined targets. Specifically, FDFEB takes a composite image
as input and obtains the corresponding low-frequency (i.e, illumina-
tion features, etc) and high-frequency (i.e., foreground texture and
content structure features, etc) components using the Haar wavelet
transform [15]. The ISCGB, a conditional diffusion model, aims to
take a noisy composite image as input and output a illumination har-
monization result. Based on these two networks, a Multi-Condition
Guidance Mechanism (M-CGM) is further proposed to realize the
effective guidance of FDFEB to ISCGB.

Besides, since existing methods [47, 52, 56] use specified bound-
ing box to constrain foreground position, the limited space with-
out a clear target direction greatly limits the ability of foreground
shadow generation. To effectively address the issue of reasonable
generation of foreground shadows, our intuitive insight is to pro-
vide the ISCGB with a reasonable shadow generation space. Thus,
we first define the shadow generation space as an shadow mask
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optimization problem , and further formulate the shadow genera-
tion problem as to jointly track image global illumination harmo-
nization and refined foreground shadow mask. Specifically, given
a coarse shadow mask prior produced by the pretrained model
[20], a shadow mask step-wise iterative optimization strategy is
introduced to the ISCGB. Note that, shadow mask optimization is
designed as an auxiliary task of the ISCGB to progressively refine
the shadow mask, enabling our model to generate more accurate
and reasonable foreground shadow.
Our contributions are summarized as follows:

e We propose a novel Image Illumination Harmonization Diffu-
sion model named I?HDiffuser, which consists of frequency
domain feature enhancement branch (FDFEB) and illumination-
shadow consistency generation branch (ISCGB) to achieve
image illumination harmonization with the high-fidelity fore-
ground appearance and reasonable casting shadows.

e A Multi-Condition Guidance Mechanism (M-CGM) is pro-
posed to effectively inject the prior conditions of FDFEB into
ISCGB for guiding the generation of high-quality illumina-
tion harmonization images.

o A shadow generation space step-wise iterative optimization
strategy is introduced to ISCGB for dynamically updating
the target space of generating foreground cast shadow.

2 RELATED WORK

2.1 Image Illumination Harmonization

Previous image illumination harmonization works mainly consist
of two categories: 1) traditional image illumination harmonization
methods aim to adjust foreground to background appearance by
leveraging low-level image representations, such as color distribu-
tion [39, 40, 51] and gradient information [22, 49]. 2) Some recent
contributions [2, 5, 6, 10, 23, 24, 29, 33, 36, 45, 48, 61] are based
on deep learning method, which design different end-to-end deep
network structures to better understand image illumination harmo-
nization from different perspectives.

The methods [9, 18, 46] used various attention modules to sepa-
rately handle foreground and background, or modeled the relation
between foreground and background to achieve image illumination
harmonization. For example, the method [9] designed the channel-
wise and spatial-wise attention mechanism to further improve the
visual quality of harmonized results. The methods [2, 7, 8, 17, 30, 33]
defined image illumination harmonization task as domain transla-
tion or style transfer problems. Among them, Cong et al. [8] defined
the image harmonization as a domain adaptation problem and suc-
cessfully used the enhanced U-Net generator to achieve notable
performance. Bao et al.[2] used background shading stylization
to guide the foreground illumination regeneration for effectively
achieving global illumination harmonization.

Some methods [11-13] utilized Retinex theory [27] to achieve
image illumination harmonization task by decomposing an image
into reflectance map and lighting map. Besides, the method [38]
proposed to use global information to guide foreground feature
transformation and further transfer the foreground-background
relation from real images to composite images for image illumi-
nation harmonization. Zhang et al.[56] presented a controllable
image composition method that unifies four tasks in one diffusion
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model: image blending, image harmonization, view synthesis, and
generative composition.

2.2 Diffusion Models

Diffusion models are a class of deep generative models, which have
recently have shown remarkable performance in image generation
[19, 31] and become the new state-of-the-art (SOTA) generation
models. Unsurprisingly, they have also shown great potential and
been successfully applied to various CV tasks, including image
editing [16, 21, 35, 58], super-resolution, inpainting [34, 43] and
translation [25]. For the super-resolution through repeated refine-
ment, they use DDPM [19] to make conditional image generation,
and achieve image super resolution via a stochastic iterative de-
noising strategy. Rombach et al. [42] apply diffusion models in the
latent space of powerful pretrained autoencoders , and turn dif-
fusion models into powerful and flexible generators for general
conditioning inputs via introducing cross-attention layers into the
model architecture.

Besides, Lugmayr et al.[34] design an denoising strategy by re-
sampling iterations for better conditioning the images and achiev-
ing high-quality and diverse output images for any inpainting form.
Song et al. [47] presented the first diffusion model-based frame-
work for generative object compositing that can handle mul-tiple
aspects of compositing such as viewpoint, geometry, illumination
and shadow. Recently, Zhou et al. [60] and Yu et al. [55] proposed
the difussion model-based image illumination-shadow consistency
generation. They all used the predicted coarse shadows and global
image as prior conditions for controlling and guiding foreground
illumination-shadow generation. However, they still cannot guar-
antee the high fidelity presentation of the local appearance of the
foreground and the generation of casting shadows with reasonable
shapes, resulting in a lack of realism in the results.

3 PROPOSED METHOD

3.1 Problem Formulation

Given one quaternion input ( I, I M, Mp) consists of a composite
image I € RHFXW>3 with H and W representing its height and width
respectively, the corresponding ground truth image I € RFEXWX3,
the foreground mask M € REXWX1 indicating the region to be
harmonized and an estimated coarse shadow mask M,, € RHEXWx1
indicating the foreground shadow generation region. Our goal is to
train a generative model G, which is able to generate an illumination
harmonization image [ with the high fidelity foreground appearance
and the reasonable shadow, expecting to be as close to I as possible.
We thus formulate our generative model as I=G6(M, Mp).

3.2 I°’HDiffuser Overview

We propose a novel Image Illumination Harmonization Diffusion
model called I*HDiffuser for achieving image illumination seamless
integration. As illustrated in Figure 2, our I?HDiffuser consists of
frequency domain feature enhancement branch (FDFEB) containing
the Wavelet Transform Module (WTM) and the Multi-Condition
Guidance Mechanism (M-CGM) and illumination-shadow consis-
tency generation branch (ISCGB), which collaborate with each
other to complete our image illumination harmonization task.
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WTM. As part of FDFEB (Figure 3), WTM first employs the auto-
encoder based architecture[28] and takes the composite image I €
REXHXW with the corresponding foreground mask M € RFXWx1
as input to perform new spatial feature F extraction. Then, we
further introduce wavelet transform module (WTM) based on the
Haar wavelet transform [15] to convert spatial domain feature F
into four frequency domain components:

AH,V,D = HWT(F), Q)

where, A, H, V, D present the low-frequency component, horizontal
high-frequency component, vertical high-frequency component,
and diagonal high-frequency component, respectively. The HWT
presents the Haar wavelet transform, which is widely adopted in
real-world applications due to its simplicity and computational ef-
ficiency. Further, we concatenate the high-frequency components
H,V, D to form a high-frequency signal. Finally, the high-frequency
signal and the low-frequency component are respectively followed
by non-linear operations for feature mapping and obtaining ulti-
mate high-frequency features (i.e., containing foreground texture
and content structure features, et) F, and low-frequency features
(i.e, containing illumination features, etc) F;:

F. Fp = (0(81x1(A)), 0(81x1(Cat (H, V., D)))), )

where the dimensions of Fj, and F; are (C, H/2,W/2), 0(-) and dgxx
present the batch normalization calculation and a convolution ker-
nel size of K X K, respectively.Note that the low-frequency fea-
tures F; and high-frequency features Fj, play different roles in IS-
CGB, respectively. Among them, Fj, is mainly used to enhance
foreground content and structure details, ensuring that the high
fidelity foreground appearance is generated in ISCGB. Meanwhile,
Fj is employed to guide ISCGB to generate foreground illumination
consistent with the background illumination.

ISCGB. The ISCGB, as shown in Figure 2 ( the bottom branch),
is designed as a controllable conditional generative model (IHDM)
based on diffusion models. The ISCGB is to generate the global
illumination harmonization result under the guidance of Fj, and
F from the WTM and the coarse foreground mask M, predicted
by the pretrained model [20]. Note that the M, is mainly used to
provide a initial coarse foreground shadow generation space for
the input image, which is gradually optimized to achieve a coarse-
to-fine result during the denoising process and effectively guides
foreground shadow generation.

In ISCGB, our constructed denoising U-Net €g, at the step ¢ first

takes the time step ¢ and the concatenation of the output features
Foutput
Zt+1

feature My, as input Fle “! Then the FZP T passed through
the encoder of €, to produce intermediate output denoising fea-
ture F;,, which is followed by the WTM for generating frequency
domain components Fz,;, and Fz, ;. These components are further
aggregated with Fj, and F; through the M-CGM to obtain a new
denoising feature Fy,,; with enhanced foreground content and sen-
sitive background illumination. Finally, Fy,,; is fed into the decoder
of eg, to generate ultimate output Fy tu tP¥ \which contains the grad-
ually refined illumination harmonization image X; and foreground
shadow mask M;.

Note that, we use a foreground shadow mask prediction head to
predict the refined mask M;, which is connected to the last layer of

of the denoised U-Net €g,,, and a shadow mask auxiliary



MM °25, October 27-31, 2025, Dublin, Ireland

Zhongyun Bao, Gang Fu, Jianchi Sun, Jing Zhou, Zigi Yu and Chunxia Xiao

Frequency domain feature enhancement branch (FDFEB)

Composite Image Foreground Mask

e

WTM :Wavelet Transform Module . Concatenation
IWTM :Inverse Wavelet Transform Module M-CGM : Multi-Condition Guidance Mechanism F ;4 : denoising feature

M-CGM

. » [
'YX ) M-CGM

(<

Output

~:Frozen F, : Intermediate output denoising feature |
1
]

Figure 2: The overview of our I?’HDiffuser. It mainly consists of a frequency domain feature enhancement branch (FDFEB) and
an illumination-shadow consistency generation branch (ISCGB).

Feature encoder

Fj : High-Frequency Features F, : Low-Frequency Features
CDIFA: Cross-Domain Illumination Fusion Attention
CACEM : Ci Attention Content Ent Module
F.y : Intermediate output denoising low-frequency feature

F,y, : Intermediate output denoising
high-frequency feature

© : Concatenation ’

Figure 3: The structure of the FDFEB.

€p and consists of one 1X 1 convolution layer followed by a sigmoid
function. Also, we adopt the corresponding ground truth shadow
mask Mgt to further supervise by Ly,

L = [M: - Mor]f5

®)

where Mgr is obtained by binarizing the residual map between the
composite image I and the corresponding ground truth image I, ie.,
setting | —I| > 0.5 as 1 and others as 0.

In total, we can learn our controllable conditional illumination
harmonization diffusion model (IHDM) by optimizing the objective
function,

©

where A is the weighting coefficient to balance the influence of each
term.

Lrgiom = ||e — o, (X2, FlthaMp)”; +ALrm,

M-CGM. Multi-Condition Guidance Mechanism (M-CGM), as
illustrated in Figure 3 (M-CGM), which aims to inject two different
conditions Fj, and F; extracted by the WTM into the U-Net of our
diffusion model to respectively preserve the foreground content
details and guide the foreground illumination to be consistent with
the background.

Specifically, M-CGM consists of two parts: 1) high fidelity fore-
ground content enhancement module; 2) background illumination-
aware guidance module. With the high-frequency features Fj, and
low-frequency features F; of the WTM, Fy, is first concatenated
with the denoising feature F, ;, to form a new content feature Fpeqy.
To improve the capability of foreground content detail preserva-
tion, we design a cross-attention content enhancement module
(CACEM), as shown in Figure 4, to achieve high fidelity foreground
content aggregation. We separately employ Fe, and Fj, as Key
and Value, while F, , is employed as Query. The cross-attention
results in a global content-aware feature W, which is chunked into
two parts in a channel-wise manner and further passed through the
average pooling layer to produce two related content collaboration
vectors Wi and Ws. Finally, we separately conduct a channel-wise
multiplication on Fy, and Fz, ;, using Wi and W5, and further weight
them to obtain output I, with strengthen the content details.

To effectively exploit background illumination to guide harmo-
nious foreground illumination generation, we further design a back-
ground illumination-aware cross-domain illumination fusion atten-
tion (CDIFA), as shown in Figure 5, to achieve illumination sensi-
tive feature aggregation. CDIFA takes the F,; and the Fj as inputs,
which are respectively fed into different weight filters composed of
global average pooling and fully connected layers. Then, weight
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Figure 5: The structure of the CDIFA.

filters encode specific weight information for each channel and out-
put corresponding weights W, and W}, for a single channel. Mean-
while, the F;,; and the Fj are also input into multi-head attention
mechanisms, which are used to encode specific low-frequency infor-
mation and obtain corresponding multi-channel features MSA, (F;)
and MSAy(F, ;). Finally, these features are cross multiplied and
summed to generate the final aggregated feature F o,;:

F out = MSAq(F1) © Wy + MSAp(Fz, ;) © W, 5)

With the F oy and I, we aggregate them and output the corre-
sponding spatial features Fyy; through inverse wavelet transform
module IWTM).

4 EXPERIMENTS

4.1 Implementation Details

Our I*HDiffuser is implemented by PyTorch, which is trained using
one RTX 3090Ti GPU. We use Adam optimizer with the momentum
as (0.9, 0.999). The training epoch and initial learning rate are set
as 1000 and 3 X 107>, respectively. We split the 15,000 quadruplets
into 14,200 quadruplets for training and 800 quadruplets for testing.
There is no crossover between our training dataset and testing
dataset. Besides, we set the A = 0.5 in our experiments.

4.2 Dataset and Evaluation Metrics

We conduct sufficient experimental verification and comparison on
the following two datasets.

IH-SG Dataset. The IH-SG [60], a high-quality real-world out-
door illumination harmonization dataset, obtains 15000 quadruplets
in total, each with a naive composite image, the corresponding
masks of the foreground object and background object-shadow, and
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ground truth image. Besides, to facilitate the training and testing
of our network, we set the resolution of our dataset to 256 X 256
for our experiments.

iHarmony#4 dataset. The iHarmony4 dataset [8] consists of 4
sub-datasets: HCOCO, HAdobe5k, HFlickr, and Hday2night, each
of which contains synthesized composite images, foreground masks
of composite images, and corresponding real images.

DESOBAVv2 dataset. The DESOBAv2 dataset [32] was originally
used to shadow generation task, which has 21,575 images with
28,573 object-shadow pairs. In this paper, we improve this dataset
that meets our global illumination editing task by perturbing the
foreground appearance illumination of each image.

Evaluation Metrics. Following[2, 14], we evaluate the global
image illumination harmonization results adopting two commonly-
used metrics, i.e., Relative Mean Square Error (RMSE), Structural
Similarity Index Measure (SSIM). Besides, foreground Mean Square
Error (fMSE) and foreground Structural Similarity Index Measure
(fSSIM) are also used to evaluate the harmonized foregrounds,
which compute MSE and SSIM values between foreground regions
of input and corresponding ground truth. Among them, the smaller
fMSE, RMSE, and larger fSSIM, SSIM represent the better results.

Compared Methods. To prove the effectiveness of our method,
we compare our method with five state-of-the-art image illumi-
nation harmonization methods, which include four global illumi-
nation harmonization methods DIH-GAN [2], ObjectStitch [47],
FHSGJ[60], CFDiffusion[55], and one foreground cast shadow gen-
eration method SGDiffusion [32] .

4.3 Comparison with State-of-the-art Methods

Quantitative comparison. From Table 1 reporting the quanti-
tative comparison results of state-of-the-art image illumination
harmonization methods and our I>HDiffuser, we can see that our
method achieves the best quantitative results on all these four
evaluation metrics on the IH-SG dataset. Especially compared to
ObjectStitch [47] and SGDiffusion [32], our I*HDiffuser largely
outperforms them on SSIM, indicating that our generated global
illumination harmonization image is closer to ground truth image.
Besides, although DIH-GAN][2], CFDiffusion [55] and FHSG [60]
also consider both foreground region illumination and shadows,
the corresponding quantitative results show that its generalization
ability on real datasets is far inferior to our method. Apparently,
the significant advantage of our method on the real-world dataset
is mainly attributed to the powerful generation ability of our diffu-
sion model and the effective collaboration between the FDFEB and
ISCGB.

Qualitative comparison. Figure 6 visualizes the qualitative
results of our method and state-of-the-art baseline methods on
real IH-SG dataset. We can see that our method achieves the best
visual effect with consistent foreground illumination and more
reasonable shadows. Note that SGDiffusion [32] ignores the fore-
ground region illumination consistency generation and produces
the undesirable appearance that does not match the background
illumination, seriously effecting the quality of the generated result.
Although ObjectStitch [47], DIH-GAN[2], CFDiffusion [55] and
FHSG [60] all consider foreground illumination and casting shadow
generation, they fail to be effectively generalized to real-world
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Figure 6: Visual comparison of our method with state-of-the-art methods on real-world scenes. From the first to eighth rows are
the Input, the results of methods DIH-GAN, ObjectStitch, SGDiffusion, CFDiffusion, FHSG, I’HDiffuser, and GT, respectively.
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Table 1: Results of quantitative comparison on the testing set
of IH-SG. "T" indicates the higher the better, and "|" indicates
the lower the better. The best results are marked in bold.

Method RMSE | | SSIM T
SGDiffusion [32] | 6.724 | 0.825
ObjectStitch [47] | 9.345 | 0.798

DIH-GAN [2] | 6.658 | 0.847
CFDiffusion [55] 5.126 0.917
FHSG [60] 5248 | 0.923
Ours 4.987 0.942

fMSE | | fSSIM T
915412 | 0.809
1128.446 | 0.752
518.465 | 0.876
367.919 | 0.937
374.89 | 0.935
342.153 | 0.952

Table 2: Results of quantitative comparison on iHarmony4
and DESOBAv2 (formating iHarmony4 / DESOBAv2), respec-
tively. "1" indicates the higher the better, and "|" indicates
the lower the better. The best results are marked in bold.

Method RMSE | SSIM T fMSE | SSIM T
SGDiffusion [32] | 9.702/6.986 | 0.805/0.812 | 1615433/ 1322.141 | 0.823/0.912
ObjectStitch [47] | 8.973/6.742 | 0.842/0.853 | 1125.124/1024.145 | 0.845/ 0.897

DIH-GAN [2] 5.826/5.453 | 0.893/0.885 792.432 / 698.154 0.897 / 0.903
CFDiffusion [55] | 4.902/5.214 | 0.918/0.927 527.234/367.919 0.911/0.924
FHSG [60] 4.910/5.032 | 0.920/0.923 582.143 / 425.286 0.917 / 0.920
Ours 4.253/4.956 | 0.951/0.947 | 415.256/347.244 | 0.946/ 0.938

dataset. Apparently, due to the lack of effective shadow generation
space and foreground appearance content constraint, ObjectStitch
[47] produced unrealistic illumination-shadow consistency results.
DIH-GAN][2], CFDiffusion [55] and FHSG [60] strongly rely on
shadow clues of real occluders in the background scene. They gen-
erated illumination-shadow results are highly dependent on the
quality of the estimated foreground shadow.

@ © @ ©

Figure 7: Two testing cases of different methods on the public
iHarmony4 dataset. From left to right are composite images,
the results of DucoNet [48], PCT-Net [10] and the [*HDiffuser,
and ground truth images, respectively.

In contrast, our I*HDiffuser effectively and intuitively achieves
global illumination harmonization results, which utilizes collabora-
tion between the FDFEB and the ISCGB and the effective guidance
of the foreground shadow generation space.

Besides, we also provide some visual testing cases of different
methods on public iHarmony4 dataset (Figure 7), DESOBAv2
dataset (Figure 1) and randomly captured daily life real-world
image (Figure 8) . The quantitative comparision results on iHar-
mony4 and DESOBAv2 datasets are also reported in Table 2. It can
be seen that our method outperforms the best existing related meth-
ods in both the generation of appearance illumination of foreground
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Figure 8: Two testing cases from daily life scene.From left to
right are composite images, the results of DIH-GAN [2], Ob-
jectStitch [47], SGDiffusion [32], CFDiffusion [55], FHSG [60]
and the I*HDiffuser, respectively.

region and foreground cast shadows, achieving impressive image
illumination-shadow consistency results, which fully demonstrates
the effectiveness of our I>HDiffuser.

4.4 User Study on Real Composite Images

We also conduct a user study as done in [2, 38] to further evaluate
the performance of our method and other four competitive methods.
We first collect 200 extra real-world composite images outside the
IH-SG dataset. For each composite image, we can acquire five differ-
ent illumination harmonization results by using different methods
(four baselines and our method). Then, we thus judge the realism
of illumination harmonization results based on subjective visual
effects. Specifically, we recruit 90 participants from different pro-
fessions and ask them to select the more harmonious result from
an image pair each time. Finally, we take the collected results to
calculate the global ranking of all methods using the Bradley-Terry
(B-T) model [3, 26]. The B-T scores are reported in Table 3, we can
see that our I?HDiffuser obtain the highest B-T score, which fully
proves the superiority of our method on real datasets.

Table 3: B-T scores of different methods on 200 real composite
images.

Comp SGDiffusion ObjectStitch DIH-GAN CFDiffusion FHSG Ours
B-Tscores  0.041 0.203 0.306 0.241 0.289 0.276  0.324

4.5 Ablation Study

To prove the effectiveness of each design choice in our I?’HDiffuser,
we further conduct ablation study by modifying the I?HDiffuser
architecture to evaluate the performance of different design choices.
We mainly conduct experiments from the following five aspects: 1)
Removing CACEM (i.e., w/o CACEM) for researching the impact
of foreground content on the preservation of local detail content;
2) Removing CDIFA (i.e., w/o CDIFA) to study the guidance of
background illumination on the generation of foreground illumina-
tion consistency; 3) removing Haar wavelet transform (w/o WT)
to study the importance of frequency domain feature operations
on the whole image illumination consistency generation; 4) inves-
tigating the interaction between CDIFA and CACEM in the task
of generating global illumination consistency, including all using
CACEM (all CACEM), all using CDIFA (all CDIFA) and exchanging
them (CDIFA & CACEM). 5) Removing shadow generation space
optimization strategy (i.e., w/o SGSO) to study the performance of
foreground shadow generation.
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Figure 9: The visual results of the ablation study, including the input, the results of the w/o CDIFA, w/o SGSO, w/o CACEM, all
CDIFA, all CACEM, CACEM & CDIFA, w/o WT, the [?’HDiffusion, and ground truth, respectively.

Table 4: Quantitative results of the ablation study on the
IH-SG dataset. "1" indicates the higher the better, and "|"
indicates the lower the better. The best results are marked in
bold.

Method RMSE | | SSIMT | fMSE | | £SSIM |
w/o CACEM 8573 | 0812 | 1224536 | 0.79
w/o CDIFA 6.432 | 0.867 | 712.253 | 0.851
all CACEM 7.443 | 0853 | 912.245 | 0.843
all CDIFA 8432 | 0.847 | 1018.143 | 0.825
CDIFA & CACEM | 7.456 | 0.819 | 611.254 | 0.806
w/o WT 8.154 | 0.806 | 978.543 | 0.779
w/o SGSO 5124 | 0.893 | 542.142 | 0.898
Ours 4.987 | 0.942 | 342.153 | 0.952

Figure 9 and Table 4 report the qualitative and quantitative re-
sults of our ablation study, respectively. From Figure 9, we can see
that w/o CACEM results in a mismatch foreground local appear-
ance, i.e. incorrect generation of foreground local detail content,
this is mainly because our method lacks strong enhancement of
the foreground content priors to preserve local detail information.
Similarly, when we perform the w/o CDIFA, due to the lack of
effective guidance from background illumination, the generated
foreground illumination fails to match the background illumination
significantly, resulting in an inharmonious result as shown in the
second column of the first row in Figure 9. Besides, the result of
CACEM & CDIF also proves the uniqueness of the design of them.

Besides, w/o SGSO also produces an unrealistic result without
reasonable shadow ( the third column of the first row in Figure 9),
which indirectly proves the effectiveness of our proposed shadow
generation space optimization strategy. It is worth noting that
when we remove the entire wavelet transform branch, i.e. w/o
WT, we can see that the whole generated foreground appearance
lacks realism due to the lack of controllable content constraints and
illumination guidance during the generation process. In contrast,

our I’HDiffuser achieves the best illumination harmonization result
with controllable foreground appearance and reasonable shadows.
From Table 4, it can also be seen that our method obtains the best
values on all four quantitative metrics, which quantitatively proves
the superiority of our I?’HDiffuser.

Limitations. Although our I*HDiffuser can produce impres-
sive image illumination-shadow consistency results in real-world
images, it is necessary to point out that our method faces chal-
lenges in generating complex non-planar casting shadows, which
requires more geometry information as assistance. Besides, real-
time video illumination-shadow consistency processing is also a
great challenge for our I*HDiffuser.

5 CONCLUSION AND FUTURE WORK

In this work, we propose a novel Image Illumination Harmonization
Diffusion model called I2HDiffuser, which consists of the FDFEB
and ISCGB, and achieves image illumination harmonization with
high fidelity foreground appearance and reasonable shadows.

Specifically, FDFEB first introduces the Wavelet Transform Mod-
ule (WTM), which decomposes composite image features into low-
frequency (i.e, containing illumination, etc) and high-frequency
(i.e., containing texture and content structure features, etc) compo-
nents using the Haar wavelet transform. With these components,
a Multi-Condition Guidance Mechanism (M-CGM) is proposed to
aggregate them as prior conditions, which are passed through the
inverse wavelet transform (IWT) and further injected into the IS-
CGB based on diffusion models for generating global illumination
harmonization result with high fidelity content details and back-
ground illumination-aware. Meanwhile, a shadow mask step-wise
iterative optimization strategy is introduced to ISCGB for dynam-
ically guiding foreground shadows generation, achieving global
illumination harmonization results.

In the future, we will further expand our method to the multi-
foreground objects illumination harmonization and video global
illumination harmonization tasks.
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