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Abstract
Previous neural radiance fields often struggle to preserve high-
frequency textures in urban and aerial large-scale scenes due to
insufficient model capacity on the scene surface. This is attributed
to their sampling locations or grid vertices falling in empty ar-
eas. Additionally, most models do not consider the drastic changes
in distances. To address these issues, we propose a novel high-
frequency surface shell radiance field, which uses depth-guided
information to create a shell enveloping the scene surface under
the current view, and then samples conic frustums on this shell to
render high-frequency textures. Specifically, our method comprises
three parts. Initially, we propose a strategy to fuse voxel grids and
information of distance scales to generate a coarse scene at different
distance scales. Subsequently, we construct a shell based on the
depth information to carry out compensation to incorporate tex-
ture details not captured by voxels. Finally, the smooth and denoise
post-processing further improves the rendering quality. Substan-
tial scene experiments and ablation experiments demonstrate that
our method achieves the obvious improvement of high-frequency
textures at different distance scales and outperforms the state-of-
the-art methods.

CCS Concepts
• Computing methodologies → Image-based rendering.

Keywords
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1 Introduction
Rendering urban and aerial large-scale scenes has many applica-
tions like AR/VR and digital navigation. Previous neural radiance
fields [1–3] (NeRFs) have tried improving the rendering quality,
which can be categorized into two streams. The first [4–7] divides
the scene or camera poses into multiple sub-regions or groups, and
each unit is represented by a NeRF. This increases the number of
NeRF modules, indirectly enhancing model capacity on the surface.
However, those NeRFs sample along the entire ray, including empty
spaces. The second [8, 9] reconstructs a coarse scene or density
field to guide subsequent sampling, concentrating on high-density
areas near the surface. Nevertheless, some samples inevitably fall
into empty regions, such as the sampling interval ends.

Multi-layer perceptron (MLP) based NeRFs [1, 2] frequently sam-
ple along rays, resulting in many points falling into empty regions.
Therefore, much model capacity for storing geometry and appear-
ance is used to represent these meaningless spaces rather than
the scene surface. Additionally, voxel [10] and grid-based [11–13]
NeRFs only have a few vertices to be sampled near the target sur-
face, leading to an upper bound on the model capacity allocated
to the surface. These inefficient samplings result in a significant
waste of model capacity, lacking enough model capacity on the
scene surface to render high-frequency textures. Moreover, most
NeRFs [4, 5, 7, 8] have not considered the drastic changes in dis-
tances between the camera and the scene surface, which is prone
to generate blurry rendering results at various distances.

To overcome the inefficient sampling and enhance the quality
of high-frequency textures, we propose a novel high-frequency
surface shell radiance field (HS-Surf) to efficiently increase model
capacity on scene surfaces. It constructs a shell enveloping the
scene surface based on the current view’s scene depth. As shown in
Figure 1(a), the shell’s width increases with the depth to represent
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the distance, and conic frustums sampled on the shell are used to
render high-frequency textures at different distance scales. We call
this shell as High-Frequency Shell (HS). HS confines the sampling
and rendering to scene surfaces, greatly enhancing the utilization of
model capacity. Additionally, to model geometry and appearance at
different distances, we propose a feature fusion strategy to embed
conic frustums representing distances into voxel grids.

Our HS-Surf consists of three stages: initialization, compensa-
tion, and post-processing. The initialization uses hash-based voxel
grids to generate coarse geometry and appearance. To model dis-
tances with drastic changes in large-scale scenes, the proposed
feature fusion strategy embeds positional encoding of conic frus-
tums into voxel grids. The compensation generates high-frequency
textures at different distance scales. It first augments the coarse
scene depth under the current view and constructs an HS based on
the augmented depth. Conic frustums are then exclusively sampled
on the shell to generate high-frequency textures lost in the coarse
appearance. The post-processing uses a convolutional neural net-
work (CNN) to smooth and denoise the rendering results to achieve
a better visual effect.

The experimental results indicate that HS-Surf greatly improves
high-frequency textures (see Figure 1(b)) and achieves state-of-the-
art rendering quality. Additionally, we observe that our rendering
speed is 2× to 4× faster than previous NeRFs, achieving double
improvement of the rendering effect and computation efficiency.
Our contributions can be summarized as follows:

• Our proposed high-frequency shell overcomes the sampling
inefficiency of previousmethods, efficiently increasingmodel
capacity on scene surfaces to render high-frequency textures.

• The proposed feature fusion strategy embeds conic frustums
into voxels to represent the distance scales, enabling the
voxel to model the scene at various distances.

2 Related Work
2.1 Neural Radiance Fields
NeRF [1, 3] employs MLPs to model volume density and color
of spatial points. A lot of NeRF variants [14–24] are proposed to
enhance rendering fidelity, rectify camera poses, and accelerate
rendering. There are also models [25, 26] designed for unbounded
scenes. To speed up rendering, some methods replace MLPs in
NeRF with voxel [10, 27] or plane grids [11–13], but these increase
GPU memory consumption. Recent methods [28–30] map the voxel
vertices into smaller hash tables, which achieve more compact
representations. Adaptive shells [31] focus on small-scale scenes,
creating a fixed shell based on the geometry generated by NeuS
[3]. In contrast, HS-Surf creates a shell for each viewpoint based on
the scene’s depth. This dynamic shell can better represent different
distance scales. Additionally, our compensation enhances the depth
maps to obtain more reliable shells.

MipNeRF [2] samples conic frustums along rays, and uses inte-
grated positional encoding (IPE) of the frustums to represent the
distance scales. However, the local continuous space of the frustum
is incompatible with interpolation operations in grids. ZipNeRF [9]
simulates the local space by sampling six discrete points within a

Figure 1: (a) Top: Previous NeRFs sample along the entire
ray or within the grid, which usually falls in the contentless
areas or is limited by the grid resolution. It leads to rendering
blur andmodel capacity wasting. Bottom: HS-Surf constructs
a shell on the scene surface based on the current view’s depth,
fully using model capacity on texture-rich areas to improve
rendering quality. (b) Our method could render more high-
frequency details on the scene surface to improve the clarity
of textures compared to the SOTA NeRFs.

conic frustum, while our feature fusion embeds the continuous po-
sitional encoding of the frustum into the voxel grid. Therefore, our
feature fusion is theoretically superior to the discrete ZipNeRF, and
subsequent experiments also validate this conclusion. 3D Gaussian
[32] is another recent method with different mechanisms for scene
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representation, which involves fitting a large number of ellipsoids
to approximate the target scene and render novel views.

2.2 Large-scale Scene Rendering
Some traditional methods [33–40] have been proposed to recon-
struct the large-scale scenes. Their working pipeline usually needs
three stages: keypoint detection, feature matching, and bundle ad-
justment. Keypoint detection [41–43] looks for unique and easily
identifiable regions in images and constructs corresponding feature
descriptions. Then, the features of key points are matched to com-
pute camera poses and locations of 3D points. Finally, the camera
poses and 3D points are jointly optimized by bundle adjustment
[44, 45]. These methods can roughly reconstruct the target scene
and synthesize novel views [46, 47], but the results often contain
artifacts and holes.

Recently, a lot of NeRFs are used for rendering large-scale scenes.
BungeeNeRF [6] divides camera poses based on their heights, and
recovers texture details at lower heights by adding NeRF modules.
BlockNeRF [4] and MegaNeRF [5] geometrically divide the target
scene into multiple sub-regions, with each region represented by a
separate NeRF. VastGaussian [48], based on different principles, also
uses a similar approach to render large-scale scenes. By partition-
ing the camera poses or the scene, BungeeNeRF, BlockNeRF, and
MegaNeRF reduce the target regions for each sub-NeRF, increasing
the model capacity on scene surfaces. However, their performance
improvements are limited because NeRF still needs to sample the
entire ray, including empty regions. The key issue of low utiliza-
tion and allocation of model capacity on the scene surface remains
unresolved. URF [49] leverages depth data of radar as auxiliary
information to reconstruct street-level scenes. SwitchNeRF [7] clas-
sifies sampled points on rays through a gating network, thereby
obtaining a learnable region partition.

GridNeRF [8] uses planar grids (grid branch) to construct a coarse
scene, guiding the NeRF branch to add sampling points in high-
density regions near the scene surface. However, this approach
still leads to some points falling into empty regions, particularly
at the ends of the sampling interval. Moreover, the points in the
first sampling operation are distributed across the entire ray, which
increases the consumption of model capacity by empty regions.
As a result, GridNeRF still lacks sufficient model capacity on the
scene surface to render high-frequency texture details. In contrast,
HS-Surf has different motivation and working mechanism, which
constructs high-frequency shells on the scene surface. These shells
confine the computation of MLPs to the surface while excluding
the surrounding empty regions, greatly enhancing the utilization
of model capacity. Thus, our method has more power to render
high-frequency textures.

3 Method
The overview of HS-Surf is illustrated in Figure 2(a), consisting
of three stages: initialization, compensation, and post-processing.
The initialization reconstructs the coarse geometry and appearance
using hash-based voxel grids. IPE encoding of conic frustums and
grid features are fused to model the target scene at different dis-
tance scales. The compensation first augments the coarse depth
map under the current view to ensure a more accurate surface

geometry. Subsequently, it constructs an HS based on the depth
map, and samples conic frustums on HS to compensate for the lost
high-frequency textures in the coarse appearance. This step is very
important because the texture is attached to the geometry. Thus,
good depth and its subsequent product of HS can confine sampling
to effective texture areas. In the post-processing, a lightweight CNN
is employed to smooth and denoise the rendering results of the
compensation.

3.1 Initialization of Geometry and Appearance
Hash-based voxel grid is suitable for large-scale scenes as uniformly
distributed vertices ensure that model capacity is reasonably allo-
cated across the entire scene to generate a coarse radiance field.
Additionally, hash tables are very useful for reducing GPU occu-
pancy for high-resolution voxel grids.

Due to the drastic changes of distance scales in large-scale scenes,
sampling points along rays can easily result in blurry rendering
results at different distances. Inspired by MipNeRF [2], we sample
conic frustums within the target scene and use IPE encoding to
model distance scales. Specifically, a frustum is approximated by
mean and covariance, which are then fed into IPE to generate the
corresponding encoding [2]. Like MipNeRF, the radius of conic
containing the frustums at image plane 𝑜 + 𝑑𝑖𝑟 is set to ¤𝑟 , and ¤𝑟 is
the width of the pixel in world coordinates scaled by 2/

√
12.

To leverage the advantages of both the hash-based voxel grids
and conic frustums, we propose a feature fusion strategy to re-
construct the coarse scene at different distance scales. As shown
in Figure 2, the center coordinates 𝑥 of the frustums are used to
query features in the density grids 𝐷𝐺 (·) and the color grids𝐶𝐺 (·).
The IPE encoding 𝐸𝑖 of the frustums is fed into a two-layer MLP
𝑀𝑖 (·), which is then fused with density features and color features
to compute density 𝜎 and color 𝑟𝑔𝑏 as follows:

𝜎 = 𝑀𝜎 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝐷𝐺 (𝑥), 𝑀𝑖 (𝐸𝑖 )))
𝑟𝑔𝑏 = 𝑀𝑐 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝐶𝐺 (𝑥), 𝑀𝑖 (𝐸𝑖 )), 𝑑𝑖𝑟 ), (1)

where𝑀𝜎 (·) and𝑀𝑐 (·) are small MLPs for generating density and
color, and 𝑑𝑖𝑟 is the ray direction. Volume rendering subsequently
generates scene depth and rendering results.

The initialization stage can be described in two steps. The first
step samples conic frustums along rays to render pixel colors 𝐶1.
The second step conducts finer sampling based on existing sample
densities to obtain pixel depths 𝑑𝑐 and colors 𝐶2. Both steps utilize
the same voxel grids and hash tables. To ensure that the initializa-
tion results contain less artifacts such as “floaters" and “background
collapse", we add an interval-based regularization loss 𝐿𝑑𝑖𝑠𝑡 in the
fine step, which is proposed in MipNeRF360 [25].

𝐿𝑑𝑖𝑠𝑡 (𝑠,𝑤) =
∑︁
𝑖, 𝑗

𝜔𝑖𝜔 𝑗 |
𝑠𝑖 + 𝑠𝑖+1

2
−
𝑠 𝑗 + 𝑠 𝑗+1

2
|

+ 1
3

∑︁
𝑖

𝜔2
𝑖 (𝑠𝑖+1 − 𝑠𝑖 ), (2)

where 𝑠 and𝑤 represent the (normalized) ray distances and weights
of conic frustums in volume rendering, respectively. The role of
𝐿𝑑𝑖𝑠𝑡 is to concentrate the frustums with high density into a nar-
rower region. Then, the loss of the initialization stage is as follows:

𝐿𝑖𝑛𝑖𝑡 = 𝜆1 ∥ 𝐶1 −𝐶𝑔𝑡 ∥22 + ∥ 𝐶2 −𝐶𝑔𝑡 ∥22 +𝜆2𝐿𝑑𝑖𝑠𝑡 , (3)
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Figure 2: Overview of HS-Surf. (a) is the method pipeline. The initialization employs the feature fusion to embed IPE encoding
of conic frustum into the grid feature, generating the coarse geometry 𝑑𝑐 and texture 𝐶2 at different distance scales. The
compensation stage first augments the depth 𝑑𝑐 to obtain a more accurate depth 𝑑𝑓 , and constructs a high-frequency shell of the
current view based on 𝑑𝑓 . Then, for each ray, a conic frustum sampled on the shell is fed into the texture compensation to render
the high-frequency textures lost in 𝐶2. Finally, the post-processing smooths and denoises the output of the compensation stage
to achieve a better visual effect. (b), (c) and (d) are structures of feature fusion, depth augmentation and texture compensation.

where 𝐶𝑔𝑡 is the real pixel color. 𝜆1 and 𝜆2 are set to 0.1 and 0.001
in all experiments.

3.2 Compensation of Depth and Texture
The initialization includes lots of voxel vertices far from the scene
surface, leading to the insufficient model capacity on the surface and
the loss of high-frequency textures. To recover the lost textures,
we construct a high-frequency shell for each view to efficiently
increase the capacity on the surface. The details are as follows:

Depth Augmentation. The limited model capacity on the sur-
face leads to coarse geometry with noises and holes. Therefore,
before constructing the high-frequency shell, we propose a depth
augmentation module to improve the depth map under the current
view. As shown in Figures 2(a) and 2(c), the coarse depth 𝑑𝑐 is uti-
lized to compute the coordinate 𝑝𝑐 of the scene surface. The depth
augmentation then employs a four-layer MLP 𝐷 (·) to predict the
distance from 𝑝𝑐 to surface along the ray direction 𝑑𝑖𝑟 . The output
of 𝐷 (·) is added with 𝑑𝑐 to obtain a more accurate depth 𝑑𝑓 :

𝑑𝑓 = 𝐷 (𝛾 (𝑝𝑐 ), 𝛾 (𝑑𝑖𝑟 )) + 𝑑𝑐 , (4)

where 𝛾 represents the Fourier encoding [1]. More accurate depths
and positions of the scene surface guarantee fewer errors in the
inputs of subsequent modules.

We optimize the parameters of depth augmentation using both
depth loss and subsequent rendering loss 𝐿𝑟𝑒𝑛𝑑𝑒𝑟 . The depth loss
ensures that the module preserves the basic geometry and structure
of the scene, and the rendering loss 𝐿𝑟𝑒𝑛𝑑𝑒𝑟 is used to refine the

scene depth for more accurate surface representation. Without
depth ground truth, we take an augmentation manner to improve
depth. Like the pyramid image processing, we take a down-sample
on the coarse depth 𝑑𝑐 to get a low-resolution depth map, which
could filter out certain noises while preserving the major depth
information. The low-resolution depth map is obtained by a mask
𝑊 , and is then compared with the output 𝑑𝑓 of depth augmentation
to compute the depth loss 𝐿𝑑𝑒𝑝𝑡ℎ . Specifically, we downsample 𝑑𝑐
by a factor of 3, where the mask𝑊 selects pixels with coordinates
(𝑥,𝑦) can be divided by 3:

𝑊 = (𝑥%3 == 0) 𝑎𝑛𝑑 (𝑦%3 == 0)
𝐿𝑑𝑒𝑝𝑡ℎ =𝑊 · ∥ 𝑑𝑓 − 𝑑𝑐 ∥22 . (5)

High-frequency Shell.After obtaining accurate scene depth𝑑𝑓
under the current view, we need to construct a high-frequency shell
on the surface based on𝑑𝑓 . As shown in Figure 1(a), the shell’s width
𝑡𝑟𝑎𝑛𝑔𝑒 along the ray determines the enclosed space on the ray {𝑥 |𝑥 =

𝑜 +𝑡 ×𝑑𝑖𝑟, 𝑡 ∈ [𝑑𝑓 −0.5×𝑡𝑟𝑎𝑛𝑔𝑒 , 𝑑𝑓 +0.5×𝑡𝑟𝑎𝑛𝑔𝑒 ]}. An infinite cone
is constructed based on camera position, ray direction and pixel.
Then, we truncate the interval [𝑑𝑓 − 0.5 × 𝑡𝑟𝑎𝑛𝑔𝑒 , 𝑑𝑓 + 0.5 × 𝑡𝑟𝑎𝑛𝑔𝑒 ]
on conic axis to obtain a conic frustum Δ.

As the depth increases, the high-frequency textures on the sur-
face should become blurred or even disappear. Therefore, the width
of Δ needs to increase with depth to suppress the high-frequency
components in IPE encoding. The relationship between shell’s
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width 𝑡𝑟𝑎𝑛𝑔𝑒 and depth 𝑑𝑓 follows a linear function. First, we calcu-
late the normalized width 𝑟 :

𝑟 = 𝜆𝑟 · (𝑘 ·
𝑑𝑓 − 𝑛𝑒𝑎𝑟

𝑓 𝑎𝑟 − 𝑛𝑒𝑎𝑟
+ 𝑏), (6)

where 𝜆𝑟 = 0.1 is a scaling factor to stabilize the model. 𝑁𝑒𝑎𝑟 and
𝑓 𝑎𝑟 are the distances traveled along the ray from camera to enter
and exit the target scene. 𝑘 ≥ 0 and 𝑏 ≥ 0 are estimated by a four-
layer MLP, and the input of MLP is the concatenation of 𝑛𝑒𝑎𝑟 and
𝑓 𝑎𝑟 . The length 𝑡𝑟𝑎𝑛𝑔𝑒 of the shell in the world coordinate system
is as follows:

𝑡𝑟𝑎𝑛𝑔𝑒 =𝑚𝑎𝑥 (𝑚𝑖𝑛(𝑟, 1
50

), 1
2000

) · (𝑓 𝑎𝑟 − 𝑛𝑒𝑎𝑟 ) . (7)

The normalized length 𝑟 needs to be clipped to [1/2000, 1/50] for
more stable results.

Texture Compensation. After sampling a conic frustum Δ for
each ray on the high-frequency shell, we utilize continuous MLPs to
complete the high-frequency textures lost in the voxel grids during
initialization. As illustrated in Figures 2(a) and 2(d), the frustum
Δ is located at the surface coordinate 𝑝 𝑓 , and its width equals to
the shell’s width along the ray. IPE encoding of Δ and ray direction
𝑑𝑖𝑟 are then fed into an eight-layer MLP 𝐹 (·) to compute the high-
frequency texture details missing in the voxel grids. The generated
details are then added with the coarse rendering 𝐶2 to obtain the
complete appearance 𝐶𝑓 as follows:

𝐶𝑓 = 𝜆𝑓 · 𝐹 (𝐼𝑃𝐸 (Δ), 𝛾 (𝑑𝑖𝑟 )) +𝐶2, (8)

where 𝛾 is the Fourier encoding [1]. 𝜆𝑓 = 0.2 is a scale factor to
stabilize the model. The output of 𝐹 (·) is the texture residual instead
of the complete rendering result. The reason is that this method
can reduce the learning burden of MLPs and focus the attention of
model on the generation of texture details.

Since the scope of inputs in the texture compensation is confined
to the scene surface, the model capacity of MLP is dedicated to
rendering textures on the target surface. This significantly improves
both the capacity utilization on surface and the ability to render
high-frequency details. The rendering loss 𝐿𝑟𝑒𝑛𝑑𝑒𝑟 is as follows:

𝐿𝑟𝑒𝑛𝑑𝑒𝑟 = 𝜆3 ∥ 𝐶𝑓 −𝐶𝑔𝑡 ∥1 + ∥ 𝐶𝑓 −𝐶𝑔𝑡 ∥22, (9)

where𝐶𝑔𝑡 is the real pixel color, and 𝜆3 is set to 0.1. The loss function
𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 of the compensation stage includes rendering loss 𝐿𝑟𝑒𝑛𝑑𝑒𝑟
and depth loss 𝐿𝑑𝑒𝑝𝑡ℎ :

𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 = 𝐿𝑟𝑒𝑛𝑑𝑒𝑟 + 𝐿𝑑𝑒𝑝𝑡ℎ . (10)

3.3 Post-Processing of Smooth and Denoise
As the initialization and compensation stages calculate each pixel
individually, the generated results may contain noises and are not
continuously smooth. Therefore, a lightweight CNN-based post-
processing is constructed to deal with them. The network contains
two residual blocks to adjust the features of the original image 𝐶𝑓 .
Sigmoid activation is used in the final layer of convolution, which
limits the output range to [0, 1], whose details are provided in the
supplementary material. We opt for a CNN due to the necessity
of incorporating correlations between neighboring pixels in the
smoothing and denoising processes. Convolution kernels offer a

natural way to introduce such information. The loss function 𝐿𝑖𝑚𝑔

of the post-processing stage is as follows:

𝐿𝑖𝑚𝑔 = 𝜆4 ∥ 𝐶 −𝐶𝑔𝑡 ∥1 + ∥ 𝐶 −𝐶𝑔𝑡 ∥22, (11)

where 𝐶 and 𝐶𝑔𝑡 are the predicted and real colors, and 𝜆4 = 0.1.

3.4 Scene Division and Details
The compensation stage can further enhance the quality of high-
frequency textures by partitioning the target scene. Assuming the
scene is uniformly divided into 𝑁 sub-regions, and each contains a
depth augmentation and a texture compensation, with correspond-
ing MLPs represented as 𝐷𝑖 (·) and 𝐹𝑖 (·). The outputs of all sub-
regions are combined into the final results. Therefore, the output
𝑑𝑓 of depth augmentation in Equation (4) is modified as follows:

𝑑𝑓 =

∑𝑁
𝑖=1𝑀𝑖 · (𝐷𝑖 (𝛾 (𝑝𝑐 ), 𝛾 (𝑑𝑖𝑟 )) + 𝑑𝑐 )∑𝑁

𝑖=1𝑀𝑖

, (12)

where𝑀𝑖 = 1 indicates that 𝑝𝑐 is located in the 𝑖-th region, other-
wise𝑀𝑖 = 0. The output 𝐶𝑓 of texture compensation in Equation
(8) is modified as follows:

𝐶𝑓 =

∑𝑁
𝑖=1𝑀𝑖 · (𝜆𝑓 · 𝐹𝑖 (𝐼𝑃𝐸 (Δ), 𝛾 (𝑑𝑖𝑟 )) +𝐶2)∑𝑁

𝑖=1𝑀𝑖

, (13)

where 𝑀𝑖 = 1 indicates that 𝑝 𝑓 is located in the 𝑖-th region, oth-
erwise𝑀𝑖 = 0. The increment in the number of MLPs leads to an
augmentation in model capacity on the scene surface.

In Figure 2, the depth 𝑑𝑐 generated by the initialization needs
to go through a gradient stop. Otherwise, the depth augmentation
performance may decrease. In the initialization, the first coarse and
second fine step samples 64 and 128 inters along a ray, respectively.
The minimum resolution of the voxel grids is 2563, and the maxi-
mum resolution is 81923 after 15 increments. The size of hash table
is 221 × 4 or 222 × 4, and the hidden nodes of MLPs are 128. For
the compensation stage, the hidden nodes of MLPs in the depth
augmentation, estimation of high-frequency shell, and texture com-
pensation are set to 256, 64, and 512. The channel of CNN in the
post-processing is set to 32.

The training of HS-Surf consists of two stages. The first stage
involves joint training of the initialization and compensation. The
second stage only trains the post-processing. Their losses are as
follows:

𝐿𝑠𝑡𝑎𝑔𝑒1 = 𝐿𝑖𝑛𝑖𝑡 + 𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 (14)

𝐿𝑠𝑡𝑎𝑔𝑒2 = 𝐿𝑖𝑚𝑔 . (15)
The learning rate is 1𝑒 − 4 for both stages and decays exponentially
to 1𝑒 − 5 during training. More details can be found in the supple-
mentary material.

4 Experiments and results
4.1 Experiment Setup
HS-Surf is compared with the previous state-of-the-art NeRFs, in-
cluding BungeeNeRF [6], MegaNeRF [5], and GridNeRF [8]. MipN-
eRF [2] and ZipNeRF [9] are also selected, because they are basic
neural rendering methods and can model different distance scales
in large-scale scenes. All models are implemented by Python and
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Figure 3: A visual comparison example from the aerial orbiting photography of 𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎. The top row is near the ground
and the bottom row is far from the ground. The zoom-in images include different distances (near and far) and appearances
(floater and buildings).

Figure 4: Two visual comparison examples from the drone shooting with fixed altitude and route. The top row is the 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔
and the bottom row is the 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒, respectively. The zoom-in images include the complex building structure, vertical and
horizontal planes, and the vehicles with tiny height differences.

PyTorch on a single RTX3090 24G GPU. Additionally, HS-Surf is
also compared with 3D Gaussian [32], and the results are presented
in our supplementary material.

Six scenes are selected in our experiments. 𝑇𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 and
56𝐿𝑒𝑜𝑛𝑎𝑟𝑑 are two synthetic scenes from the satellite level to the

ground level [6]. 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑟𝑢𝑏𝑏𝑙𝑒 , 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 , and 𝑐𝑎𝑚𝑝𝑢𝑠 are four
real aerial data. The first two are fromMill 19 [5], and the remaining
two are from UrbanScene3D [50]. Since each image in the aerial
data has a different exposure and white balance, we refer to NeRF-
in-the-wild [51] to assign a 48-dimensional appearance embedding
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Table 1: Performance comparison of HS-Surf with previous NeRFs on large-scale scenes

Model Transamerica 56Leonard Building
PSNR ↑ SSIM ↑ LPIPS ↓ Time (s) PSNR ↑ SSIM ↑ LPIPS ↓ Time (s) PSNR ↑ SSIM ↑ LPIPS ↓ Time (s)

MipNeRF [2] 22.12 0.6016 0.4856 50.90 21.87 0.5754 0.4883 51.48 19.44 0.3853 0.6499 44.32
ZipNeRF [9] 23.34 0.7092 0.4327 38.73 24.39 0.7864 0.3376 39.31 20.47 0.5282 0.5010 36.74
BungeeNeRF [6] 22.40 0.6216 0.4812 92.16 22.15 0.6015 0.4839 93.12 × × × ×
MegaNeRF [5] × × × × × × × × 20.69 0.4738 0.5544 251.96
GridNeRF [8] 23.22 0.6769 0.4640 89.30 23.47 0.6875 0.4605 90.41 21.00 0.5055 0.5259 80.85
HS-Surf 25.59 0.8304 0.2941 25.42 26.41 0.8679 0.2363 24.51 21.88 0.6039 0.4417 27.35

Model Rubble Residence Campus
PSNR ↑ SSIM ↑ LPIPS ↓ Time (s) PSNR ↑ SSIM ↑ LPIPS ↓ Time (s) PSNR ↑ SSIM ↑ LPIPS ↓ Time (s)

MipNeRF [2] 22.12 0.3933 0.6761 44.20 20.21 0.4504 0.6582 55.66 20.89 0.3687 0.7631 55.19
ZipNeRF [9] 23.68 0.5536 0.5169 37.15 21.00 0.5424 0.5240 44.77 20.61 0.4013 0.6591 48.58
BungeeNeRF [6] × × × × × × × × × × × ×
MegaNeRF [5] 23.10 0.4591 0.6003 232.34 20.45 0.4869 0.5796 341.34 21.71 0.4028 0.6981 271.03
GridNeRF [8] 23.20 0.4752 0.5897 81.11 20.85 0.4967 0.5883 103.38 20.00 0.3863 0.6596 100.32
HS-Surf 24.24 0.5824 0.4943 27.01 22.12 0.5982 0.5015 34.06 21.97 0.4639 0.6183 34.36

for each image to model the lighting information. Details of training
and testing sets, and more model configurations can be found in
the supplementary material.

4.2 Experiment results
In Table 1, we use PSNR, SSIM, LPIPS (VGG), and the time of ren-
dering a frame to compare the rendering performance. The data
distribution in 𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 and 56𝐿𝑒𝑜𝑛𝑎𝑟𝑑 [6] is uneven because
the cameras make loop shoot for the centers of scenes. Therefore,
𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 and 56𝐿𝑒𝑜𝑛𝑎𝑟𝑑 are not divided. MegaNeRF [5] is not
suitable for this mode, so it has no corresponding results. For the
four aerial photography data, MegaNeRF and HS-Surf divide each
scene into 8 sub-regions evenly. Since the drone always keeps a sta-
ble flight height, BungeeNeRF [6] cannot divide the camera poses
according to the height from the camera to the ground, so it has no
corresponding results on the later four datasets.

In 𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 and 56𝐿𝑒𝑜𝑛𝑎𝑟𝑑 [6], the distance scales undergo
drastic changes, HS-Surf achieves noticeable improvements in all
metrics compared to models designed for variable distance scales
(MipNeRF [2], ZipNeRF [9] and BungeeNeRF [6]), as shown in
Table 1. The LPIPS errors of our method are reduced by 30%-
40%. Figure 3 demonstrates a visual comparison example in the
𝑡𝑟𝑎𝑛𝑠𝑎𝑚𝑒𝑟𝑖𝑐𝑎 from the satellite level to the ground level. HS-Surf
renders more high-frequency texture details for objects with differ-
ent distances and shapes, which benefits from that HS-Surf embeds
conic frustums into voxels to model distances and uses compensa-
tion to render high-frequency details at different distance scales.

In aerial photography scenes (𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑟𝑢𝑏𝑏𝑙𝑒 , 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 , 𝑐𝑎𝑚𝑝𝑢𝑠)
with stable heights, HS-Surf also demonstrates better performance,
with LPIPS error decreasing by 10%-20% compared to MegaNeRF
[5] and GridNeRF [8]. Figure 4 presents visual comparison examples
in 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 (top) and 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 (bottom), HS-Surf synthesizes the
most accurate views, especially regarding high-frequency textures.
In Figure 5, we visualize the surface of 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 and the sampling
strategies of three models (MipNeRF [2], GridNeRF [8], HS-Surf).
MipNeRF and GridNeRF have many samples falling into empty
regions in the fine stage. While the shell of HS-Surf tightly wraps
around the scene surface, which validates the advantage of our
method in confining the rendering to the surface and improving
the utilization of model capacity.

Figure 5: Demonstration of surface shell and sampling strate-
gies. The white dashed line represents the actual scene sur-
face, and the white solid lines represent the reconstructed
surface. The surface shell of HS-Surf is represented by green
and red lines. For MipNeRF and GridNeRF, the positions of
samples added in the fine stage are indicated by red dots.

Wefind that the rendering of HS-Surf is 2× to 4× faster than other
NeRFs in Table 1. Except for benefiting from the voxel grids, there
are two other contributing reasons: 1) The compensation stage only
samples a conic frustum for each ray. Thus, each ray only needs
to be calculated once. 2) The hidden channel of shallow CNN in
the post-processing is only 32. MipNeRF, BungeeNeRF, MegaNeRF
and GridNeRF query multiple samples along a ray in each sampling
stage, resulting in multiple computations for rendering a pixel.
ZipNeRF samples six points in a conic frustum, bringing it a huge
cost and a slow speed. Additionally, a comparison of model sizes is
presented in the supplementary materials.

4.3 Ablation Study
In Table 2, we present an ablation study of HS-Surf. The post-
processing stage is represented by PP. We summarize the findings
as follows. F) The removal of feature fusion in the initialization
results in a decreased modeling ability for distance scales. In sup-
plementary material, we demonstrate the impacts of feature fusion
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Table 2: Performance comparison of ablation experiments

Model Transamerica 56 Leonard Building Residence
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

A) w/o fusion & PP 23.77 0.7411 0.4087 24.43 0.7877 0.3476 20.79 0.4971 0.5060 21.41 0.5275 0.5394
B) w/o compensate & PP 24.95 0.7966 0.3528 23.24 0.7063 0.4528 20.50 0.4911 0.5151 21.68 0.5639 0.5089
C) w/o dea & PP 25.15 0.8089 0.3309 25.05 0.8262 0.2896 21.25 0.5521 0.4681 19.53 0.5010 0.5509
D) w/o HS & PP 25.18 0.8105 0.3332 25.98 0.8515 0.2613 20.61 0.5274 0.4852 21.61 0.5549 0.5106
E) w/o PP 25.25 0.8147 0.3251 26.12 0.8566 0.2537 21.52 0.5678 0.4537 21.99 0.5797 0.4952
F) w/o fusion 24.50 0.7814 0.3383 25.30 0.8240 0.2875 21.35 0.5567 0.4788 21.70 0.5725 0.5281
G) w/o compensate 25.29 0.8149 0.3146 23.80 0.7446 0.3722 20.89 0.5428 0.5011 21.81 0.5867 0.5128
H) w/o dea 25.49 0.8250 0.2983 25.56 0.8431 0.2623 21.66 0.5911 0.4552 19.99 0.5268 0.5584
I) w/o HS 25.51 0.8268 0.2988 26.28 0.8634 0.2419 21.14 0.5648 0.4711 21.76 0.5797 0.5185
J) complete 25.59 0.8304 0.2941 26.41 0.8679 0.2363 21.88 0.6039 0.4417 22.12 0.5982 0.5015

Figure 6: Ablation study on compensation. Without com-
pensation, the rendering results lose a lot of high-frequency
textures. The post-processing (PP) just removes noises, but
cannot generate the lost textures.

Figure 7: Ablation study on the depth augmentation. With
depth augmentation, the depth map is further improved,
alleviating the holes and depth texture-copy.

on scene representation. G) The removal of compensation leads to
a significant decrease in model performance. In Figure 6, the results
without compensation lose a lot of high-frequency textures at the
top of the building. For more results of depth and rendering, please
refer to the supplementary material. H) Removing depth augmenta-
tion (dea) in compensation leads to poor geometry and holes, and it
also affects rendering quality, as shown in Figure 7. I) Replacing the
high-frequency shell with a single spatial point in compensation
results in the framework’s inability to model distance scales, as
shown in Figure 8. A)-E) remove the post-processing based on F)-J).

Figure 8: Ablation study on the HS. When removing the HS
and directly sampling a point on the surface, the targets like
windows and ships-like become unclear.

Therefore, the rendering results contain noise and have relatively
low quality, as shown in Table 2 and Figure 6.

Note that B) retains only the feature fusion and achieves higher
metrics compared to ZipNeRF [9] in Table 1. This validates that our
feature fusion is an effective strategy for modeling distance scales.

5 Discussion and Conclusion
In this work, we aim to improve the quality of high-frequency
textures in urban and aerial large-scale scenes by dealing with
issues of inefficient sampling and various distances. The proposed
HS-Surf create a high-frequency shell on the scene surface under the
current view, and sample conic frustums on this shell to overcome
the sampling inefficiency in previous methods. As a result, model
capacity is efficiently utilized to render high-frequency textures.
Additionally, to model the distances with drastic changes in large-
scale scenes, we embed frustums representing distance into voxel
grids to construct the scene at different distance scales.

Our HS-Surf achieves better rendering results in large-scale
scenes, particularly concerning high-frequency textures. The solid
ablation study experiments validate the effectiveness of each com-
ponent in our model. Meanwhile, as we optimize the sampling
and make better use of the model capacity, our implementation
speed is also faster. In the future, we will explore integrating the
high-frequency surface shell into other rendering techniques, and
consider rendering texture details at different distance scales in
dynamic scenes.
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