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Appendices

A. Implementation details
A.1 Corresponding Points between Canonical
Space and Current Space.
We transform the point xc from canonical space to cur-
rent frame space (i-th frame) and get deformed points xi.
We need to find the corresponding points between two
spaces to utilize color loss. Following SelfRecon (Jiang et al.
2022a), we use differentiable non-rigid ray-casting. Specif-
ically, given a ray r with camera position c and ray di-
rection v, we can get the first intersection pi on the de-
formed mesh. Moreover, with the intersected triangle on the
deformed mesh, we can find pc’s corresponding point pc
on the canonical mesh by consistent barycentric weights.
With pc as the good initialization of xc, we deform point
xi = Di(xc) = W (Fi(xc)) and xi is the intersection point
of the ray r and the current space SDF. The SDF in canonical
space is f , and pc is on the surface of canonical mesh, so we
need to drive f(pc) to 0. Specifically, we solve p by:

xc = min |f(pc)|+
∥(pi − c)× v∥2

∥pi − c∥2

= argmin
pc

|f(pc)|+
∥(Di(pc)− c)× v∥2

∥(Di(pc)− c∥2
. (1)

A.2 More Details of Initialization.
We can initialize from any frame of the video. Following
NeuMan (Jiang et al. 2022b), we prefer the frame where
the limbs are separated for initialization. It avoids collision
when warping from canonical space to current space. In Fig-
ure 2, the arms and the body are merged in the initializa-
tion. It leads to incorrect initial weights. We can see that the
weight of the hand (purple) is incorrectly spread to the skirt.
Additionally, forward deformation cannot be effectively per-
formed when limbs are not separated, resulting in geometric
distortions.

*Fei Luo and Chunxia Xiao are co-corresponding authors.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

c

Deformation Di

Barycentric

Interpolation

Canonical SDF Current SDF

pipc

xc xi

Canonical Mesh Current Mesh

ac

bc cc

ai

bi
ci

Deformation Di

Barycentric 

Interpolation

Figure 1: We render the mesh in the current space and find
visible faces. We get the point pi on one visible face and
barycentric weights. Then we use the barycentric interpo-
lation to initialize the corresponding point pc in canonical
space. △aibici is one visible face in the current space. More-
over, the △acbccc is the corresponding face of △aibici in
canonical space.
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Figure 2: We select a frame for initialization. The initializa-
tion with limbs not separated leads to wrong initial weights
and incorrect human body deformation.

A.3 Network Architecture.
As Figure 3 shows, the canonical human shape SDF net-
work f includes 9 fully connected layers, each followed by
a softplus activation layer. In Figure 4, the dynamic deforma-
tion field DDF consists of a dynamic non-rigid field and an
optimized skinning transformation field. The non-rigid field
comprises 5 linear layers, each of which is terminated by



a RELU activation. We apply LBS skinning transformation
from SMPL (Loper et al. 2015) and optimize the skinning
weights in the skinning transformation field. The weights
optimization network starts with a fully-connected layer that
transforms the latent code to a 1 × 1 × 1 × 1024 grid. Subse-
quently, it is combined with 6 transposed convolutions, pro-
gressively increasing the volume size while reducing chan-
nel count, and finally produces a volume of size 65 × 225 ×
129 × 24. LeakyReLU is applied after MLP and transposed
convolution layers. Pose finetune network input joint angles
Ω into a 5-layer MLP with a width of 256 and output △Ω.
The implicit rendering network is a 9-layer MLP finishing
with a softplus activation layer.
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Figure 3: Canonical human shape SDF visualization.
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Figure 4: The visualization of dynamic deformation field
DDF. DDF contains the dynamic non-rigid deformation field
(middle), the pose decoder (top), and the weights finetune
network (down).

B. More Results
B.1 Comparison with ECON.
In Figure 5, we conducted qualitative comparisons of Econ
(Xiu et al. 2023). As we can see, ECON is limited by the nor-
mal and pose predictions, which makes it prone to obtaining
incomplete and erroneous results. We also adopt an indirect
experimental approach by comparing the mesh reconstruc-
tion when ECON and ours obtain similar and correct SMPL
to ensure fairer comparisons. In contrast, our method can
generate complete and correct clothed avatars.
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Figure 5: Geometric qualitative comparison of ECON. The
first row demonstrates that ECON leads to reconstruction
errors due to inaccurate SMPL pose estimation and mask
splitting. The second row shows that, even with a similar
and correct SMPL pose, ECON may still yield bad results.

B.2 Additional Qualitative Studies.
We also provide four views of estimated meshes in Figure 6.
The unusual waist and arms result from pose errors caused
by occlusion or invisibility. Existing pose estimation meth-
ods and 2D supervised avatar reconstruction methods cannot
address this issue. Due to the 2D supervision inner limita-
tion, it may cause some local unusual results.

We provide additional qualitative geometric results in Fig-
ure 7. We conducte experiments on types of clothing, and
Figure 7 shows that DLCA-Recon can generate favorable
results across a variety of clothing types.

B.3 Additional Quantitative Studies.
We make comparisons on public datasets. We compare with
SCARF (Feng et al. 2022) and HumanNeRF (Weng et al.
2022) respectively. Table 1 and Table 2 show that we achieve
better performance quantitatively.

Subject PSNR ↑ SSIM ↑
SCARF Ours SCARF Ours

male-3-casual 30.59 37.30 0.977 0.984
male-4-casual 31.79 38.90 0.970 0.980

female-3-casual 30.14 42.63 0.977 0.987
female-4-casual 29.96 38.53 0.972 0.976

Table 1: Quantitative comparison of SCARF in PeopleSnap-
shot dataset (Alldieck et al. 2018). We directly copy the met-
rics from SCARF. “↑” indicates the higher the better.

We present the comparison result with SOTA methods on
both parameters’ count and inference time in Table 3. When
we get the best reconstruction results, we use a CNN to opti-
mize the deformation field, which increases the parameters’
count. However, it does not increase the inferring time a lot.

B.4 Additional Ablation Studies.
Effect of Pose Decoder. As shown in Figure 8, pose de-
coder can alleviate the impact of errors in the estimated pose
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Figure 6: We show four perspectives of the clothed human. From left to right: “Antonia” and “Magdalena” from DeepCap
Dataset (Habermann et al. 2020), “FranziRed” from DynaCap dataset (Habermann et al. 2021).

Image Ours Image Ours Image Ours Image Ours Image Ours Image Ours

Figure 7: Additional qualitative geometric results. We have experiments on various types of clothing and DLCA-Recon consis-
tently generates high-quality results. Each group shows images of the video and corresponding reconstructions. The results on
the left are self-captured videos, the top two rows on the right are subject 377 and 393 from ZJU-MoCap dataset (Peng et al.
2021), and the bottom row on the right are “female-3-casual” from PeopleSnapshot dataset (Alldieck et al. 2018).

Subject PSNR ↑ SSIM ↑
HumanNeRF Ours HumanNeRF Ours

ZJU-MoCap dataset* 30.24 31.10 0.974 0.978

Table 2: Quantitative comparison of HumanNeRF on ZJU-
MoCap dataset (Peng et al. 2021). We directly copy the
metrics from HumanNeRF. We only compute “377”, “386”,
“387”, “392”, “393” and “394” from ZJU-MoCap dataset.
“↑” indicates the higher the better.

from PyMAF (Zhang et al. 2021). By using accurate poses,
we can achieve more precise reconstruction results.

Effect of Delayed Optimization. Figure 9 demonstrates
that without delayed optimization, the reconstruction
method fails due to the excessive number of learnable pa-
rameters.

Methods Params(M) Infer Time(s)
SCARF(NeRF-based Method) 21.23 16.88

Vid2Avatar 1.42 992.98
SelfRecon 3.79 66.51

Ours 73.45 80.35

Table 3: Computation complexity comparison on methods.
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Figure 8: Pose decoder refines the body pose during opti-
mization. It corrects the left arm from (b) to (c).
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Figure 9: Without delayed optimization, Geometries in (b)
become distorted during the training process.
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