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Abstract

A perennial problem in structure from motion (SfM) is
visual ambiguity posed by repetitive structures. Recent dis-
ambiguating algorithms infer ambiguities mainly via ex-
plicit background context, thus face limitations in highly
ambiguous scenes which are visually indistinguishable. In-
stead of analyzing local visual information, we propose a
novel algorithm for SfM disambiguation that explores the
global topology as encoded in photo collections. An im-
portant adaptation of this work is to approximate the avail-
able imagery using a manifold of viewpoints. We note that,
while ambiguous images appear deceptively similar in ap-
pearance, they are actually located far apart on geodesics.
We establish the manifold by adaptively identifying cameras
with adjacent viewpoint, and detect ambiguities via a new
measure, geodesic consistency. We demonstrate the accu-
racy and ef�ciency of the proposed approach on a range of
complex ambiguity datasets, even including the challenging
scenes without background con�icts.

1. Introduction

Repetitive structures are widely existed in human world.
When put them directly into 3D reconstruction, e.g., struc-
ture from motion (SfM), signi�cant geometric errors would
occur. Such reconstruction de�ciency stems from the de-
ceptive correspondence between ambiguous pictures. As
in standard SfM pipelines [2, 11, 26], a pairwise feature
matching [20] is usually applied �rst to establish visual con-
nectivity across images. However, in the presence of repet-
itive structures, this step becomes very unreliable. Many
similar but distinct features on different facades would be
equally connected, which consequently misguide the fol-
lowing SfM process to register multiple instances onto a
single surface, and give rise to hallucinating reconstruction
models.

Distinguishing structural ambiguities is a challenging
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Figure 1. An example of visually indistinguishable scenes. (a)
shows the symmetric structures of Temple of Heaven in Beijing.
They are extremely similar in texture and contain little informa-
tion in background for ambiguity inferring. Hence recent disam-
biguating methods would still lead to incorrect models for such
scenes. (b) demonstrates that, rather than background context, the
geodesic relationship explored by neighboring images provides a
more meaningful way for ambiguity reasoning.

and vital task in SfM. Recent state-of-the-art methods [13,
16, 29] identify ambiguities relying highly on background
context. That means, suf�cient visual contradiction beside
duplicate structures should exist within ambiguous images.
Yet, for some scenes without noticeable background distinc-
tion, e.g., the Temple of Heaven shown in Fig.1(a), the as-
sumption will be violated.

The reason we, human observers, have the ability to
distinguish ambiguities is likely because we can extract a
global scene prior from the input collection, and then draw
upon this knowledge to bridge the location gap between dif-
ferent views for decision making. In this paper we also in-
tend to exploit this information. We note that the captured
imagery of a scene often clusters along certain accessible
paths in practice. Such assembled viewpoint collection re-
veals a high level knowledge on the global topology of input



scene, that is, while ambiguous images appear deceptively
similar in texture, they are actually located far apart accord-
ing to the viewpoint variation (as illustrated in Fig.1(b)).

We thus propose in this paper a novel geodesic-aware al-
gorithm for visual ambiguity correction in SfM. Our basic
idea is to characterize the available imagery using a mani-
fold of viewpoints, and identify visual ambiguities through
the intuition that a putative feature match should be not only
visually connected but also geodetically consistent, which
can be respectively encoded in two networks,visibility net-
workandpath network. We reason that the correspondences
connected in visibility network but becoming unconnected
according to the visual propagation along path network are
geodetically inconsistent, i.e., ambiguous correspondences.
Our algorithm is scalable and serves as a pre-process to the
actual SfM reconstruction. We conduct 3D reconstruction
on various challenging ambiguity datasets, and show cor-
rect registrations even in visually indistinguishable scenes.

In summary, we present three major contributions in this
paper: (i) the idea of modeling the available imagery us-
ing a manifold of viewpoints for ambiguity correction in
SfM applications, (ii ) an embedding framework that orga-
nizes images geodetically onto manifolds in the presence
of duplicate image content, and (iii ) a new measurement,
geodesic consistency, for adaptive ambiguity identi�cation.
Our code will be made available athttps://github.
com/yanqingan/SfM_Disambiguation .

2. Related Work

Symmetric and duplicate structure has recently earned
great interest in graphics and vision community. Such pat-
tern provides an informative prior for applications, like im-
age completion [15], monocular modeling [17, 25, 31], bun-
dle readjustment [9] and scene stitching [8]. On the other
hand, repetitive structures can also contribute to visual am-
biguities in feature matching, which are disastrous to SfM.
While recent matching systems [7, 19, 32, 33] have made
signi�cantly progress on ef�ciency and accuracy, they are
still incapable of distinguishing ambiguous features. In this
section, we revisit several kinds of related approaches that
aim at mitigating the effect of structural ambiguity.

The �rst kind of work are based on geometric reasoning.
Zach et al. [36] infer structural ambiguities by validating
loop consistencyover match graph. They reason that the
cumulation of associate transforms between an image pair
in a loop should be the identity. Any cycle involving obvi-
ous loop closure inconsistency indicates the emergence of
incorrect registrations. However, this criteria limits the ef-
fectiveness of this approach over larger loops, as the accu-
mulated errors in transform calculation would become non-
ignorable. Ceylanet al. [6] present another method based
on the idea of loop constraint. They �rst detect repetitive
elements in each image via a user-marked pattern, then per-

form a graph-based optimization to obtain global consistent
repetition results. This method makes signi�cant improve-
ments over Zachet al. [36] but speci�es in only regular rep-
etitions appearing on planar facades, thus can not handle
rotational symmetries as found on domes, churches, etc.

Another mechanism for structural ambiguity is to ex-
plore background context. Zachet al. [35] introduce the
concept ofmissing correspondences, where the main idea
is to analyze the co-occurrence of feature correspondences
among image triplets. If a third image loses a large portion
of matches shared by the other two, then this view is more
likely to be mismatched. Yet, this metric is also prone to re-
jecting many positive image pairs with large viewpoint vari-
ation punitively. Robertset al. [22] improve the criteria by
integrating it with the image timestamp cue into an expec-
tation maximization (EM) framework and estimating mis-
registrations iteratively. Such temporal information makes
their method more accurate, whereas also limits its usage in
unordered images. Jianget al. [16] introduce a novel objec-
tive function that evaluates global missing correspondences
upon the entire scene instead of image triplets. They argue
that a correct 3D reconstruction should associate to the min-
imal missing of reprojected 3D points in images. This as-
sumption is reasonable, however, it also fails on unordered
photo collections.

Therefore, more recently, Wilson and Snavely [29] ex-
tend the idea of missing correspondences to large-scale In-
ternet collections. They validate if the neighboring observa-
tions within one image are also visible to other pictures and
adoptbipartite local clustering coef�cient(blcc) to quan-
tify such consistency. This algorithm is quite scalable, but
not well suited for small-scale datasets. In addition, it eas-
ily leads to over-segmentations, as all detected badtracks
are directly discarded. Heinlyet al. [13] introduce a use-
ful post-processing framework for ambiguity correction by
analyzing reprojected geometry con�icts between images.
They �rst obtain an initial 3D model via SfM, then detect
and mitigate mis-registration errors in SfM by comparing
the 2D projections of distinctive 3D structures. Taking in-
spiration from this work, Heinlyet al. [14] design another
post-processing approach by ef�ciently analyzing the co-
occurrence of 3D points across images usinglocal cluster-
ing coef�cient (lcc). These two methods are functioned in
many challenging scenes, however, incur some computa-
tional cost, as a reconstructed 3D model is required. More-
over, for the scene without explicit background distinction,
they would also lead to poor performance.

In this work, we explore a totally different property from
recent existing disambiguation methods. Our method inves-
tigates the geodesic relationship among photo collections
and makes no assumption on sequence information or back-
ground context. This enables our method to tackle a range
of challenging photo collections, where recent approaches

https://github.com/yanqingan/SfM_Disambiguation
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Figure 2. The statistics of feature matches according to viewpoint
changes. Although these images look the same, many matches are
still missing and can only be matched by neighboring images with
similar viewpoint.

either fail or work poorly. Another advantage of our ap-
proach is the scalability. Our method serves as a pre-process
to the incremental SfM and works automatically and ef�-
ciently even on large-scale Internet datasets. Furthermore,
our method does not delete a bad track directly, instead, we
separate it into multiple distinct individuals. So it enables
us to produce unbroken models.

3. Modeling Ambiguity on Manifolds

As in standard structure from motion (SfM) setups [26],
we assume that a collection of imagesI = f I 1; :::; I n g
about a desired scene is available, associated with a set of
feature matches acquired by image matching [20] and geo-
metric veri�cation [10]. More speci�cally, the relationship
between images and correspondences can be expressed as a
bipartite graphV = ( I ; T; L), calledvisibility network[29].
It has nodes respectively for imagesI and tracksT, where a
track Tf refers to a sequence of local features capturing the
same physical pointf within different image planes, and an
edge(I i ; Tf ) 2 L exists if the spatial point represented by
trackTf is visible in I i . We denote avisual connectionas
an edge pair(L if ; L jf ) linked by the same track.

SfM operates on tracks for image registration and cam-
era attachment. Normally, a track should correspond to a
unique 3D point in the physical world, however, in the pres-
ence of duplicate structures, the feature matching step is
prone to blending multiple 3D points into a single track.
Our objective is thus to validate the plausibility of visual
connections inV and decompose those blended tracks. We
note that even if duplicate structures look the same in ap-
pearance, they are actually situated in different geographi-
cal positions, i.e., there are location con�icts between them.
Fig. 3 shows a brie�y illustration of our idea.

3.1. Path Network Representation

In order to tractably estimate the location con�ict with-
out known camera poses, we convert this hard wide-

baseline problem into many easier small-baseline pieces by
investigating the viewpoint trajectory as encoded topologi-
cally in thepath network. Formally, the networkG = ( I ; E)
has nodes for every imageI i 2 I , and edges(I i ; I j ) 2
E linking image pairs that have geodetically neighboring
viewpoint, e.g., sideward movement.

This is based on three useful observations. (1) In prac-
tice, photographers always snap a scene along certain acces-
sible streets, which can be described as a sequence of paths
within path network. (2) For the purpose of 3D reconstruc-
tion, the input scene is often over-pictured from different
viewpoints. Such abundant visual overlaps can serve as the
adjacent sampling nodes along network paths. (3) Ambigu-
ous structures are just texturally similar but never exactly
the same, as the example shown in Fig.2. That implies, the
geodetically neighbors usually contain more useful infor-
mation, which is meaningful for network construction, than
duplicate copies.

The many geodetic neighbors for each image provide us
a high level knowledge on the global topology of 3D scene
for ambiguity reasoning rather than a single image content.
We also de�ne that ageodesic pathPij = f E i � ; :::; E � j g
refers to a sequence of connected edges linking imageI i

andI j . Note that such pathPij actually reveals the virtual
camera trajectory from viewpointI i to I j . Duplicate images
with similar appearance always consist of a distant geodesic
path in the network as shown in Fig.3(a).

3.2. Geodesic Consistency

Yet our scheme is not to calculate geodesic distances
(shortest paths [5, 27]) directly between each image pair
in the network, as it is dif�cult to decide the exact thresh-
old that corresponds to the emergence of visual ambiguity.
Many ambiguity-free images with wide viewpoint variation
may also contribute to large distance values. We propose in-
stead a new metric,geodesic consistency, to quantitatively
measure the contradiction. We note that if two images are
mismatched, the geodesic paths between them are either
blocked or visually disjointed; it is unable to propagate what
they see from one node to another according to the view-
point variation in path network, even though they are visu-
ally connected in visibility network.

To illustrate this concept more clearly, we refer to the
example in Fig.3. In Fig. 3(a), we show a path network
consists of six images (with IDs in colored circles) from
datasetArc de Triomphe. The images directly linked by
an edge (the black solid line) are geodetically adjacent.
Fig. 3(b) shows two tracksA andB (as plotted in blue and
orange respectively), which offer us the visibility of three
3D points (B corresponds to two points), and two geodesic
paths within the network: from image1 to 3 and from im-
age1 to 6. In order to validate the plausibility of visual con-
nection associated to trackA between image1 and3. We
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Figure 3. A simple illustration of our geodesic-aware disambiguating strategy. (a) shows a path network consisting of six images inArc
de Triomphe. Note that while the two ambiguous images look similar in appearance, they share a long geodesic path. (b) shows two
tracks and two geodesic paths. The visual connection corresponding to trackA between image1 and3 is geodetically consistent, as
all intermediate nodes – image2, in this path also observe this track. However, the connection between image1 and6 for track B is
inconsistent; the track is lost in intermediate image4 along its geodesic path.

check if all intermediate nodes along its geodesic path also
observe this track. Since trackA is visible to image2, the
connection thus satis�es the criteria of geodesic consistency
and is considered plausible. In contrast, the connection be-
tween image1 and6 is implausible, where its geodesic path
consists of six images. While image1; 2; 3 all observe track
B , in image4, the track is lost. This disconnection in vis-
ibility propagation provides the evidence of scene change
and indicates that image1 and6 actually correspond to dis-
tinct 3D points, i.e., geodetically inconsistent.

Therefore, the geodesic consistency criteria requires that
the correct pairwise connections ought to be transmissible
based on their geodesic paths in networkG. More speci�-
cally, letL if denotes an edge inV between nodeI i andTf .
We de�ne thata visual connection(L if ; L jf ) associated to
track Tf is geodetically consistent, only if existing a feasi-
ble geodesic pathPij = f E ik ; :::; Ek 0j g � E links image
I i and I j , and each intermediate nodeI k along this path
observes the track, i.e.,L kf 2 L; otherwise, the connection
is ambiguity-affected.We formulate this measure as below:

H (L if ; L jf ) =
�

1 Pij 6= ; ,
� 1 otherwise.

(1)

3.3. Objective

We now have a metric that capably determines ambigu-
ous connections. However, we do not mean to remove
tracks that contain inconsistent connections directly, instead
we �nd a way to reuse them. Our objective can thus be ex-
pressed simply in the form of:

QL =
X

T 0
f 2 T0

H (L 0
if ; L 0

jf ) �
X

T f 2 T

H (L if ; L jf ); (2)

which needs to be maximized. We takeV as the only input.
V 0 = ( I ; T0; L0) is a new disambiguated visibility network
we intend to achieve.

Term
P

H (�) evaluates the total quality of edge pairs in
V according to the geodesic consistency criteria. If there
are undesired connections, they would contribute to a nega-
tive increase to the evaluation. By dividing confusing tracks
into distinct ones, we could block the negative contribution
originating from inconsistent visual connections and get a
largerQL . In comparison, incorrect splitting of plausible
tracks would cause a decrease of positive edge pairs. Thus,
intuitively, the global maximum ofQL should correspond
to a correct visibility network. If the dataset is ambiguity-
free, all visual connections contribute to a positive value, so
QL = 0 andV 0 = V .

4. Disambiguating Algorithm

Our algorithm accordingly has two main steps: (1) con-
struct a path network, then (2) revise ambiguous tracks
based on the analysis of geodesic consistency. We next de-
scribe each of them in turn.

4.1. Network Construction

A main technical problem we face is the establishment of
path network. It is challenging to acquire desirable geodesic
relations from images without known cameras poses or geo-
tags, particularly in the presence of ambiguous image con-
tent. Recent image embedding methods, likeknn-based
methods [4, 27] or training-based methods [12, 28] do not
take ambiguity into consideration, so they are not valid al-
ternatives in our cases. Although [23] use a ranking-based
method for sideways image retrieval, it is also insuf�ciently
robust for most ambiguity datasets. To overcome this chal-
lenging problem, we propose a useful sample-and-grow
strategy, which exploits both explicit and implicit unique
points within images for neighborhood inference.
Scene sampling phaseNormally, a 3D scene can be de-
composed into two categories of points:confusing points



D which contribute to ambiguities, andunique pointsU
that do not cause visual ambiguity. Such unique points are
meaningful information for our network construction. Fur-
thermore, unique points also include two groups: explicit
unique points (e.g., salient background con�icts, such as
explored in [13, 16, 29]) and implicit unique points (cor-
responding to small-scale texture variation). As shown in
Fig. 2, even if ambiguous photos look extremely similar,
there are still many features that can only be matched by
their geodetically neighbors. This suggests that, beyond ex-
plicit background distinction, there are also many implicit
unique points in foreground can be used.

In order to identify unique points (both the explicits and
implicits), we summarize the scene by selecting a set of
iconic images. In particular, we require that the selected
samplesC � I should satisfy two properties: (i) complete-
ness, i.e., covering the scene as complete as possible, and
(ii ) distinctiveness, which means the iconic images ought to
be suf�ciently distinctive from one another in appearance.

Such iconic views provide an overview of the input
scene. Additionally, we note that due to the existence of
unique points within foreground and the requirement of
scene completeness, the representative images correspond-
ing to repetitive structures, e.g., the front and back gate of
Arc de Triomphe, would be also respectively selected. By
intersecting these iconic images, we can then get the confus-
ing points that contribute to geometric ambiguities; on the
other hand, the remaining points consequently are unique
points. To formulate, letT i denotes the tracks observed by
imageI i . Given the iconic set, we approximate the overall
points of this scene byTC =

S
I i 2 C T i , whereTC � T.

The confusing points are therefore expressed as the tracks
that are observed by more than one iconic image, where
D =

S
I i ;I j 2 C T i \ T j , and accordingly the unique points

can then be computed viaU = TC � D.
To obtain the iconic images adaptively, we formulate

above properties into two objective terms. Termcomplete-
nesscan be expressed asj

S
I i 2 C T i j, which describes the

number of tracks that are covered by setC. We expect this
term to be as large as possible in order to ensure a good
coverage of the input scene. In the meanwhile, termdis-
tinctivenessis quanti�ed in the form ofj

S
I i ;I j 2 C T i \ T j j,

which measures the collision of tracks contained in the set.
This term prevents us choosing redundant candidates from
similar viewpoint. Consequently, our sampling process is
then equivalent to maximize the following quality function:

R(C) = j
[

I i 2 C

T i j � � j
[

I i ;I j 2 C

T i \ T j j; (3)

where� > 0 controls the effect of distinctiveness term.
We solve the optimization problem in an ef�cient greedy

manner, similar to [24]. This scheme begins withC = ;
andR(C) = 0 . At each iteration, we calculate� = R(C [

I i ) � R(C) for each imageI i =2 C in the photo collection
and choose the viewI � , for which its � � is maximal. If
� � � 0, we then add this view intoC as a new iconic image.
The iteration proceeds until no view in the collection can
make� � � 0.
Path growth phaseGiven the selected iconic images and
unique points, this phase involves the computation of link-
ages between iconic views and the other images according
to unique points. In this respect, the path networkG can be
looked upon as a bipartite graph with nodes respectively are
iconic images and non-iconic images.

According to the calculation of unique pointsU, they
would be uniquely distributed in each iconic image; there
are no common points between any two of them. The
unique pointsUi contained in each iconic imageI i actu-
ally indicate the scene that should be visible in neighboring
non-iconic images. We therefore de�ne that an image pair
is geodetically adjacentonly if they share common unique
points. Formally, for each non-iconic imageI j , we add a
direct edge to the network betweenI j and any iconic image
I i satisfyingjUj \ Ui j > � , where� is a small positive con-
stant for the consideration of noise tracks. We use� = 5 in
our experiments.

Note that the acquired path network is meaningful; the
selected iconic images form the basic anchors of the input
scene, whereas non-iconic images serve as paths relating
these isolate points. This embedding scheme is ef�cient and
performs well on our experimental datasets.

4.2. Track Regeneration

With the available path network, our remaining computa-
tion is then to obtain a disambiguated visibility network that
maximizes the objective in Eq.2. Rather than exhaustively
validate geodesic consistency on each visual connection in
V , we take an ef�cient propagation approach.

Initially, the disambiguated visibility networkV 0 is
empty. For each imageI i , we investigate its direct neigh-
bors inG. If the trackTf in V , shared byI i and one of its
neighborsI j , is already observed by imageI i (or I j ) in V 0

in the form of trackT0
f , then we associate the other view

I j (or I i ) also to this existed trackT0
f ; otherwise, we create

a new track to represent the connection betweenI i andI j

in V 0. This scheme makes the visibility gradually propa-
gate from one image to its neighbors in path network until
all images and their direct neighbors have been processed.
It creates new tracks only when it is necessary, so guaran-
tees the optimum to Eq.2. Additionally, there is no need to
explicitly compute geodesic consistency, as these directly
connected neighbors are geodetically consistent.

In practical implementation, this procedure can be re-
garded as a step of re-computing tracks based on the neigh-
borhood in path network and can be done ef�ciently by trav-
eling the network in breadth-�rst order.



5. Experiments

In this section, we evaluate the performance of our pro-
posed algorithm on a wide variety of photo collections that
are associated with visual ambiguities. They are common
examples in our daily life, ranged from small-scale labora-
tory objects to large-scale urban structures. Table1 lists a
detailed summary of these datasets.

There is only one parameter� used in our method. This
makes our approach a viable option for general use. We
found that the value� = 0 :1 is suf�cient to produce sat-
isfactory results in our experiments. We implement the al-
gorithm in C++ and test it on a machine of 3.30GHz Xeon
quad-core CPU, along with 32GB memory.

We �rst validate the robustness of our method on a set of
benchmark datasets for correct SfM reconstruction. Dataset
Oats [22] is obtained by sampling around an indoor ob-
ject using a handheld camera. Thus it is relatively small
in scale and has uniform image resolution and illumination
condition. It is interesting to note that there are no dupli-
cate objects in this scene; it is the same object placed in
different places. So it contains little implicit unique points
in foreground, but the existence of massive explicit unique
points in background supports our inference. Additionally,
we found in experiment that our scene sampling algorithm
in Sec4.1is able to identify the entirety of confusing points
in this scene, while accompanying about 38% negative se-
lections. Yet fortunately, the over-identi�cation of a certain
amount of confusing points, in some cases, would not cause
much trouble, as long as there still are enough unique points
remaining in each image to indicate geodesic inference.

In contrast, unstructured photo collectionsArc de Tri-
omphe, Alexander Nevsky CathedralandBerliner Dom,
acquired from [13], are much larger in scale and contain
images with various resolutions and illuminations. They all
exhibit a closure of a landmark architecture, however, due
to the existence of repeated structures, some parts are mis-
placed. These datasets contain both a high quantity of ex-
plicit and implicit unique points, which makes our method
easily rectify ambiguous tracks and yield correct 3D mod-
els. ForArc de Triomphe, we successfully recover its two
facades in opposite directions while keeping them unbro-
ken. ForAlexander Nevsky Cathedral, our method is able
to prune the hallucinating dome stemming from duplicate
structures, and correct the mis-registration along the river
of Berliner Dom.

Moreover, We also test our algorithm on separate mod-
els, such asRadcliffe Camera [13] andSacre Coeur[29].
Like [13], our method succeeds to identify the two ambigu-
ous facades ofRadcliffe Camera. Yet due to the missing
of available images linking these two facades, the disam-
biguated model is also divided into two parts.Sacre Coeur
suffers from the same problem, but more challenging. There
are many structures causing ambiguity, such as the sideway

Table 1. Performance statistics of our algorithm on different photo
collections. From top to bottom, the datasets respectively are
Sacre Coeur, Berliner Dom, Alexander Nevsky Cathedral,
Arc de Triomphe, Radcliffe Camera, Temple of Heaven, Cup,
Building andOats. N img andNpt indicate the number of input
cameras and reconstructed 3D points respectively.

Dataset N img Npt
Time

Ours [29] [13]
SC 4,530 590,268 51.4 m 6.1 m –
BD 1,618 241,422 11.9 m 3.2 m 11.8 h

ANC 448 92,820 2.3 m 36 s 33.4 m
AdT 434 92,055 2.2 m 21 s 39.7 m
RC 282 77,623 1.2 m 28 s –
ToH 145 127,752 2.0 m 18 s 26.7 m
Cup 64 8,810 27 s 3 s 2.5 m
Bd 47 14,895 36 s 2 s 2.0 m

Oats 23 8,585 10 s 1 s 45 s

facades, extra towers and domes. Similar to [29], our algo-
rithm achieves the four parts of this model: the front and
two sides of the building, and an overview towards Paris.
The results on these datasets are shown in Fig.4.

To evaluate the specialty, besides benchmark collections,
we also test our method on several challenging datasets,
where recent disambiguating systems work poorly or fail.
DatasetCup [16] shows a single cup with duplicate tex-
tures on opposite surfaces. The only available background
context is the cup handle (as exploited in [16]), whereas it is
hard to detect via super-pixel segmentation in [13]. Dataset
Building exhibits a series of highly repetitive facades on
a building. These pictures are taken along a straight street
and contain rare distinctive structures. Moreover, we also
test our algorithm on the dif�cult challenge ofTemple of
Heavenin [16] (serving as one of their limitations). This
rotationally symmetric architecture looks nearly the same
from any direction, while exhibiting negligible features in
background. A commonality of these examples is the dif�-
culty in discrimination by making use of missing correspon-
dences [29] or con�icting observations [13]. In contrast,
our algorithm exploits not only the explicit unique points
in background for ambiguity reasoning, but also implicit
unique points within foreground. We correctly recover the
camera trajectory and symmetric geometry of these scenes.
Fig. 5 shows our disambiguating results.

In Table1, we record the detailed performance statistics
of our system, including the number of input images and re-
constructed points, and the runtime (including disambigua-
tion and I/O process) of each compared method. Our algo-
rithm is much more ef�cient than [13] and has a wider ap-
plication scope as compared to [13, 16, 29]. Since it serves
as a pre-process for SfM, we do not require the availabil-
ity of camera poses and 3D point locations in advance. We
test [29] and our algorithm on only one core, whereas [13]
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Figure 4. Disambiguation results of our method on benchmark datasets. From 1 to 6:Oats, Arc de Triomphe, Alexander Nevsky
Cathedral, Berliner Dom, Radcliffe Camera andSacre Coeur. The left pictures show the results produced by VisualSFM [30]. The
right images marked in orange are the results acquired by our proposed algorithm.

is performed on 4 threads.

Comparison with [29] For further comparison, we run the
Matlab code from [29] on datasets in our experiments. This
method also serves as a pre-process to standard SfM recon-
struction and takes the visibility network as input. How-
ever, it additionally requires an FOV (�eld of view) �le.
The main advantage of this method is its scalability. It can
be seen from our statistics on runtime performance in Ta-
ble.1. This algorithm is extremely fast as compared to [13]
and ours. However, it suffers from a big limitation on ac-
curacy. WhileSacre Coeuris correctly separated, many
other datasets are over-segmented, such asRadcliffe Cam-
era andBerliner Dom. The main reason attributes to this
phenomenon is the punitive removal of bad tracks. In addi-

tion, it also has failures onOats and visually indistinguish-
able datasets, due to the limited images for blcc validation
and the lack of background information.

Comparison with [13] To compare with this work, we also
test their Matlab code and use the thread pool set to be 4.
This method is much more robust than [29] and performs
well on most datasets in our experiments due to the exis-
tence of suf�cient background context. However, it fails on
visually indistinguishable datasets as well. ForCup, Vi-
sualSFM provides a roughly correct point cloud but with
rare background con�icts for further improvement, so this
method outputs the input with geometry unchanged. For
Building and Temple of Heaven, it also fails to identify
duplicate structures due to the lack of useful con�icting ob-



Figure 5. Results on several challenging datasets with visually indistinguishable repetitions, which respectively areCup, Building and
Temple of Heaven. The second column shows the results of [30]. The third column exhibits the 3D models generated by our method.

servations. Another de�ciency of the approach is its high
computational cost. It requires an initial SfM model as in-
put and relies on SLIC [1] to detect super-pixels in each im-
age. So in order to disambiguateBerliner Dom, it spends
us more than 11 hours and 20GB memory spaces. Addi-
tionally, we always encounter parallelization errors in Mat-
lab when testRadcliffe Cameraon different machines, and
suffer from an over�ow onSacre Coeur.

Limitations Although we have demonstrated the effective-
ness of our method on diverse datasets, we also note sev-
eral limitations. First, deriving path network from images
is a challenging problem. In order to produce satisfactory
results, we implicitly assume that there are suf�cient view-
point overlaps (usually less than 60 degrees) between im-
ages. We have visualized the curve of matches accord-
ing to viewpoint variation in Fig.2. The lack of reason-
able viewpoint overlaps around duplicate instances, such
as two photo clusters taken at widely different scales about
one identical building, may affect the accuracy of geodesic
inference in our path network construction. Second, the
greedy search in scene sampling phase in Sec.4.1could get
stuck at a local maximum. For instance, consider the recon-
struction result (left facade) ofArc de Triomphe in Fig. 4.
Due to the over-selection of iconic images, some positive
tracks that do not cause ambiguity are considered as con-

fusing points and eliminated in path network construction.
This leads several images to remain isolated in path network
and could not be linked in track regeneration step.

6. Conclusion

In this paper, we have presented a new geodesic-aware
method to remedy SfM ambiguity caused by repetitive
structures, which can be considered as a valid complement
to background context. We note that the input imagery ap-
proximates a manifold of viewpoints and ambiguous views
fall apart on this manifold. We propose a useful framework
to infer geodesic relationship from images in the presence of
ambiguity, and a meaningful measure to quantify ambigu-
ity. We show that this method is accurate and ef�cient and
can handle a variety of challenging examples even without
informative background context.

The path network provides an intuitive way for scene un-
derstanding. Thus in the future, it might be fruitful to extend
the geodesic prior to SLAM [18, 21, 34] for loop-closure
detection, and SfM scene analysis [3, 8].
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