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Abstract This paper presents an
efficient framework which supports
both automatic and interactive shape
extraction from surfaces. Unlike
most of the existing hierarchical
shape extraction methods, which are
based on computationally expensive
top-down algorithms, our framework
employs a fast bottom-up hierarchical
method with multiscale aggregation.
We introduce a geometric simi-
larity measure, which operates at
multiple scales and guarantees that
a hierarchy of high-level features
are automatically found through
local adaptive aggregation. We also
show that the aggregation process
allows easy incorporation of user-
specified constraints, enabling users
to interactively extract features of
interest. Both our automatic and the

interactive shape extraction methods
do not require explicit connectivity
information, and thus are applicable
to unorganized point sets. Addition-
ally, with the hierarchical feature
representation, we design a simple
and effective method to perform
partial shape matching, allowing
efficient search of self-similar
features across the entire surface.
Experiments show that our methods
robustly extract visually meaningful
features and are significantly faster
than related methods.

Keywords Mesh segmentation ·
Geometric similarity measure · Shape
matching · Shape extraction

1 Introduction

Automatic extraction of visually meaningful pieces from
surfaces is an important step towards object recog-
nition. Since features are usually of different sizes,
hierarchical/multiscale shape extraction methods are de-
sirable. Most existing hierarchical methods (see [2, 30]
and references therein) analyze objects in a top-down
manner and focus on finding an ultimate partition of a sur-
face, i.e. a division of the surface into non-overlapping
features. These methods generally need to compute all
pairwise global similarity measures between vertices or

∗This work was done when Chunxia Xiao was a postdoctoral research
fellow at Hong Kong University of Science & Technology.

faces of the entire surface. Hence, they are computation-
ally expensive and their time complexities are Ω(N2),
where N denotes the number of vertices or faces in the
object.

In contrast, bottom-up approaches using aggregation
operations are efficient, as they only involve computation
of local similarity measures. However, extracting global
features through local aggregation is generally challeng-
ing [7]. We solve this problem by presenting a bottom-up
framework using adaptive aggregation with a multiscale
similarity measure. Although our framework cannot guar-
antee a partition of the surface, we show that it enables
easy integration of both automatic and interactive shape
extraction into the same framework. We also demonstrate
that our framework has advantages for some certain ap-
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plications, in particular partial shape matching. These al-
gorithms are efficient, with linear time complexity in the
number of vertices.

Our automatic feature-extraction method is inspired by
Sharon et al.’s work on image segmentation using adap-
tive aggregation [34]. However, adapting this algorithm
from the two-dimensional domain to three-dimensional
(3D) surfaces is not straightforward (see the discussion
in Sect. 3). We bridge the gap by introducing a new ge-
ometric similarity measure which operates at multiple
scales. Our method automatically builds an input surface
into a hierarchy of aggregates through adaptive aggre-
gation, weighted by the multiscale similarity measure.
This similarity measure employs the accumulated statis-
tics within each aggregate, thus making the aggregation
process insensitive to small fluctuations or (locally) re-
peated patterns in surfaces. Its adaptivity nature guar-
antees that the statistics of different aggregates are not
wrongly accumulated across the aggregate boundaries.
After a hierarchy of aggregates is built, we use an en-
ergy formulation derived from a normalized cut [35] to
automatically identify at all levels the visually meaningful
features of different sizes (see an example in Fig. 1).

Since whether or not a shape-extraction result is desir-
able is somewhat subjective and application oriented, the
results of fully automatic extraction algorithms, includ-
ing ours, may not always be desirable. User interaction is
needed to aid the segmentation process towards yielding
desirable results. We present an interactive tool to extract
features of interest. Our tool allows the user to casually
draw a small set of strokes to give hints on which vertices
should be included in or excluded from a desired feature.

Fig. 1a–e. Our method efficiently builds a bottom-up hierarchy of aggregates through multiscale aggregation. a, b and c Aggregates at
levels 6, 7 and 9, respectively. Aggregates with low energy at every level of the hierarchy are then automatically detected as visually
meaningful features. d and e Features (in blue) at levels 11 and 13, respectively

We design a constrained weighted aggregation algorithm
which produces visually meaningful aggregates respecting
the user’s intention. Our interactive tool is fast, providing
instant visual feedback even for large-scale models.

Partial shape matching is a fundamental tool for many
geometric applications, such as self-shape matching and
partial shape retrieval. Based on our multiscale similar-
ity measure and energy function for feature identification,
we introduce a simple and effective partial shape matching
approach. The hierarchical structure allows us to search
matching subparts across the surface efficiently. The ini-
tialization time of our approach is significantly shorter
than that of the state-of-the-art method proposed by Gal
and Cohen-Or [6].

Both our automatic and interactive shape extraction
methods do not require explicit connectivity informa-
tion. Therefore, besides irregular meshes, we adapt these
methods to unorganized point sets.

2 Related work

Mesh-segmentation research has been active for a long
time and many techniques have been proposed (see the
latest surveys in [2] and [30]). Existing techniques can be
categorized into two main groups. One group segments
a mesh into patches that best fit a given set of prim-
itives, e.g. planes, spheres and cylinders [1]. The other
group aims to obtain visually meaningful pieces. Our al-
gorithm falls into the latter group, which we briefly review
here.
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Automatic surface segmentation. Most state-of-the-art
mesh-segmentation techniques are based on clustering
algorithms. By defining a similarity measure based on
geodesic distances and dihedral angles between all pairs
of mesh faces, Katz and Tal [14] used k-means cluster-
ing and fuzzy clustering to segment meaningful com-
ponents. This method was later extended to perform
pose-invariant segmentation in [13] by choosing k fea-
ture points instead of k random points [14] as clustering
seeds. The time complexity and the memory cost of com-
puting all pairwise geodesic distances are high, making
these methods prohibitive for large-scale models. For large
models, k-means clustering can be performed on a simpli-
fied coarse mesh [14] or a hierarchy of feature-sensitive
meshes [15]. Mortara et al. [24] presented a plumber algo-
rithm that segments a surface into connected components
that are either body parts or elongated features, and this
segmentation method can be done at single or multiscale.
Lai et al. [15] proposed to use statistical quantities of
local surface characteristics for clustering, allowing more
meaningful segmentation of surfaces with small noisy
shapes or geometric textures.

Liu and Zhang [21] adapted spectral clustering to mesh
segmentation. They used a similarity measure based on
pairwise geodesic distances and minimized a normalized
cost associated with a cutting of a mesh. Their method
suffers from a similar performance problem as the work
of Katz and Tal [14]. Later, Liu et al. [20] accelerated
that method using the Nyström approximation method.
Liu and Zhang [22] reduced the mesh-segmentation prob-
lem to efficient contour analysis by spectrally projecting
a mesh to a plane. Yamazaki et al. [38] presented a method
based on spectral clustering to segment unorganized point
sets.

Performing clustering algorithms only once generally
does not give desirable segmentations. Therefore, exist-
ing segmentation methods usually produce a top-down
hierarchical segmentation by recursively applying a clus-
tering algorithm to each segmented part. This leads to
a partition of the surface, with each part corresponding to
a feature. Another main category of mesh segmentation
is to build the hierarchy of features from the bottom up.
The earlier bottom-up techniques segment a mesh into re-
gions through growing regions from certain sources [23,
26, 36, 41]. However, due to its local nature, region grow-
ing easily leads to over-segmentation and is sensitive to
noise. Garland et al. [7] built a bottom-up hierarchy of
aggregates, which are, however, best-fit planar patches
rather than meaningful features. By combining curvature
maps and graph cuts in a multiscale framework, Gatzke
and Grimm [8] presented a multiscale approach to extract
meaningful features.

Interactive surface segmentation. Unlike automatic seg-
mentation, interactive segmentation techniques generally
aim to extract a feature of interest from a whole sur-

face through simple user interaction, that is, to partition
an input surface into two parts: foreground and back-
ground.

There are two main categories of user interfaces for
interactive feature extraction: boundary-based and region-
based. In boundary-based methods, the user draws strokes
near the cutting boundary of a desired feature. Find-
ing the final cutting boundary is equivalent to solving
a closed shortest path problem constrained by the user-
drawn strokes [5, 17, 18, 31]. With region-based methods,
the user draws strokes indicating the inside or outside
of a region of interest. Ji et al. [12] used a watershed
algorithm [26] with a new feature-sensitive metric to
grow the regions from the user-specified strokes. Zelinka
and Garland [40] presented an interactive region-based
algorithm by computing minimum-cost graph cuts and
accelerated it in a multiresolution framework.

Our interactive feature-extraction tool is region-based.
Unlike the most closely related work by Ji et al. [12],
whose feature metric does not operate at multiple scales,
our multiscale similarity measure leads to more intuitive
segmentation results, especially for regions with small
fluctuations or geometric textures (see a comparison ex-
ample in Fig. 7).

Local shape matching. How to measure similarity be-
tween local shapes is crucial in local shape matching.
Many local shape comparison methods have been pro-
posed (e.g. based on curvature matching at multiple
scales [9, 39] and signature vectors derived from salient
feature points [19]). More recently, Gal and Cohen-Or [6]
defined a set of sparse local surface descriptors based on
surface curvature analysis, to capture the essence of the
mesh geometry, and used the descriptors for partial shape
matching of surfaces.

3 Automatic geometric shape extraction

In this section, we present our efficient method for auto-
matic shape extraction from meshes. It is inspired by
Sharon et al.’s idea of image segmentation based on
weighted aggregation [34]. Their method first adaptively
assembles pixels into small aggregates according to lumi-
nance resemblance, and then assembles the small aggre-
gates. To extract perceptually more meaningful features,
besides resemblance at pixel level, they introduced mul-
tiscale similarity measures between aggregates. At every
level of a pyramid, aggregates whose associated cut-
ting costs have low values are detected as the salient
segments.

However, to extend the above image-segmentation
method to 3D meshes, we need to address two main issues.
First, the definitions of similarity measures for images and
surfaces are very different. Vertex positions of surfaces,
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which are the counterpart of pixel colors or luminance
values of images, are not sufficient to define an effective
geometric similarity measure. We need additional shape
descriptors defined on 3D surfaces, such as curvatures and
normals. Second, unlike images, meshes are irregular both
in connectivity and sampling.

3.1 Geometric similarity measurement

We introduce a geometric similarity measure between ad-
jacent vertices. We regard a mesh to be segmented as
a graph G = (V, E), with V = {vi |1 ≤ i ≤ n} denoting its
set of n nodes, each corresponding to a mesh vertex, and E
being the set of undirected edges {eij = (vi, vj)}, each cor-
responding to a mesh edge.

Our geometric similarity measure is defined in terms of
two shape deviation metrics which indicate the differences
in local shapes. Since curvature is an important geomet-
ric measure of local shapes, we define the first deviation
metric as the curvature contrast between neighboring ver-
tices vi and vj :

κ(vi, vj) = |κH(vi)−κH(vj)|,
where κH(v) denotes the mean curvature at vertex v. We
choose to use the curvature flow operator [4] to evaluate
the normalized mean curvature: κH(vi) = |δ(vi)|, with

δ(vi) = 1
∑

j∈N(i)(cot αj + cot βj)

×
∑

j∈N(i)

(cot αj + cot βj)(vi −vj),

where N(i) denotes the 1-ring neighboring node indices
of node vi , and αj and βj are the two angles opposite the
edge eij . To achieve a more robust curvature estimation
for the vertices on noisy or poorly triangulated meshes,
we may also exploit the normal cycle method [3] or the
curvature map method [9].

Directional curvatures are important to distinguish
orientations of shapes. To determine the boundary of the
surface segmentation components, we define the second
shape deviation metric based on the surface creases, that
is, we define this metric based on the convexities and nor-
mal contrast of adjacent vertices:

ξ(vi, vj) = 1+λ · concave(vi, vj)| arccos(ni ·nj)|,
where λ ∈ [0, 1] (λ = 0.5 in all our experiments), ni
and nj are the unit normals at vi and vj , respectively, and
concave(vi, vj) = −1 if both vi and vj are convex vertices
or both are concave vertices, and 1 otherwise. A vertex vi
is regarded as a convex vertex if δ(vi) ·ni ≥ 0, and con-
cave otherwise. We compute the normal ni as the average
normals of faces adjacent to vi , weighted by the corres-
ponding face areas.

Based on the above two shape deviation metrics, we
define a similarity measure between the end points of an
edge eij as ωij = exp(−α ·weight(vi, vj)), with

weight(vi, vj) = η
κ(vi, vj)

µκ

+ (1−η)
ξ(vi, vj)

µξ

,

where α and η are two positive parameters (we use α = 0.5
and η = 0.6 in all our experiments) and µκ and µξ are the
means of {κ(vi, vj)} and {ξ(vi, vj)} between all the adja-
cent vertices in the surface, respectively. Through divid-
ing κ(vi, vj) and ξ(vi, vj) by their means, we alleviate the
potential problem due to irregular sampling. Figure 2 visu-
alizes our similarity measure between adjacent vertices.

3.2 Shape extraction with adaptive aggregation

We now describe an adaptive vertex aggregation process
to segment a graph G weighted by the similarity meas-
ures {ωij}. Similar to [34], we use a normalized energy
associated with a cutting of the graph into two subgraphs
to identify the meaningful features:

Γ(u) =
∑

i> j ωij(ui −uj)
2

∑
i> j ωij uiu j

= uTLu
1
2 uTWu

, (1)

where u = (u1, . . . , un)
T is a vector of state variables,

W is the affinity matrix, with Wij = ωij if vi and vj
are adjacent and Wij = 0 otherwise, and L = D − W is
the Laplacian matrix of the graph, with D = diag(d1, d2,
. . . , dn), di = ∑

j ωij . Any Boolean assignment of u that
yields a low-energy value Γ(u) corresponds to a salient
segment S in the mesh: the vertices i ∈ {1, 2, . . . , n} for
which ui = 1 are the vertices in S; ui = 0 means not in S.

Liu and Zhang [21] minimized an energy similar
to Γ(u) through global optimization, which is recursively

Fig. 2. Visualization of geometric similarity computed between ad-
jacent vertices (red: high similarity, black: low similarity)
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performed to obtain a top-down hierarchical segmenta-
tion. This process, however, is computationally expensive.
Instead of directly minimizing the energy Γ(u), we present
a fast approximate method, based on algebraic multigrid
solvers.

We use an iterative process of adaptive vertex aggre-
gation. We start by choosing a subset of vertices from the
original graph, denoted by C = {ck|1 ≤ k ≤ N}, to con-
stitute a coarse graph (usually N ∈ [n

4 , n
2 ]). These N ver-

tices, called seeds, are chosen such that every vertex v in
the original graph is strongly coupled (that is, similar in
terms of ωij) to at least one seed adjacent to v. We adopt
a method similar to [32] to generate the seeds, as follows.
We first order the nodes (vertices or aggregates) by the
area they represent. We select the first node with the larg-
est area to be a seed. Then, we scan nodes according to
this order and check their degree of coupling to the previ-
ously selected nodes. Whenever we encounter a node that
is weakly coupled to the selected nodes, we add that node
to the list of seeds.

Then, the state variables u can be approximately rep-
resented through u = PU , where U = (U1, U2, . . . , UN)T

denotes a vector of state variables corresponding to C
and P is a sparse matrix {pij}n×N . For simplicity of no-
tation, we assume that the vertices in C correspond to
the first N vertices of V ; then Uk = uk, k = 1, 2, . . . , N,
and

pik =

⎧
⎪⎨

⎪⎩

ωik/
∑

j ωij if i > N,

0 if 1 ≤ i ≤ N and i �= k,

1 if 1 ≤ i ≤ N and i = k.

Substituting u in Eq. 1 by PU , we obtain the energy to be
minimized at the coarse level as

Γ(U) � UT(PTLP)U
1
2UT(PTWP)U

=
∑

k>l ω̃kl(Uk −Ul)
2

∑
k>l ω̂klUkUl

, (2)

Fig. 3a–e. Examples of shape extraction with multiscale aggregation. b, c and d Aggregates at levels 5, 6 and 7, respectively. e A mean-
ingful feature (in blue) detected at level 7 and the corresponding fuzzy region (in red)

where the weights ω̃kl and ω̂kl are derived from PTLP
and PTWP, respectively. Γ(U) can be approximated by
replacing ω̃kl with ω̂kl [34]. In the approximate represen-
tation of Γ(U), ω̂kl acts as a similarity measure between
neighboring aggregates k and l, like the similarity meas-
ure ωij between neighboring vertices i and j at the finest
level. Note that ω̂kl here only operates at the current coarse
level; in Sect. 3.3 we will extend it to operate at mul-
tiple scales. This coarsening procedure is repeated level
after level. Figures 1 and 3 show the aggregates at dif-
ferent levels for the Buddha and Moai models, respect-
ively.

To identify the salient features at every level of the ag-
gregate hierarchy, we evaluate the value of Γ(U). Specif-
ically, for the kth aggregate at a particular level, we com-
pute Γ(U) by setting the kth entry of U to 1 and the rest of
the entries to zero. An aggregate S is then regarded as salient
if and only if both the following conditions are satisfied:

– its associated energy Γ(U) is below a given threshold,
– Area(S) ∈ [s1, s2], where Area(S) is the area of S rela-

tive to the total area of the mesh, and 0 < s1 < s2 < 1
(s1 = 0.01 and s2 = 0.5 by default).

The second condition has two purposes. First, it avoids
the trivial solution u = (1, 1, . . . , 1) (i.e. Area(S) = 1) of
having only one segment composing the entire model.
Second, it avoids tiny aggregates at low levels of aggrega-
tion, which are too small (i.e. Area(S) < s1) to be salient
features.

3.3 Multiscale similarity measure

The vertex aggregation process we have described above
is based on the weights computed solely from geomet-
ric properties of the finest graph. In this subsection,
we show that statistical measurement computed on the
newly formed aggregates can be used to improve feature-
extraction results.
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Fig. 4. Feature extraction with the similarity measure defined only
at vertex levels (left) and with multiscale similarity measures
(right)

Statistics of curvature are important for recognizing
patches of consistent geometry. We associate two types of
curvature statistical information, denoted by (Gk, Qk)

T,
to each aggregate k. Here, Gk is the average curvature
of the subaggregates in aggregate k, which is useful for
robust detection of regions whose curvature falls off grad-
ually near the patch boundaries (see the head region of
the bird in Fig. 4) or for handling noisy boundaries. The
entry Qk is the average variance of curvature of subag-
gregates in aggregate k, which is useful for characterizing
geometric textures. Both Gk and Qk are computed from
the subaggregates by averaging weighted according to the
interpolation matrix P, and include its average curvature
and the variances in the average curvatures of its subaggre-
gates at all finer scales [33].

Now we define a multiscale similarity measure ωkl be-
tween neighboring aggregates k and l as

ωkl = (1+ exp(−ρ|Gk − Gl|))
× (1+ exp(−ς|Qk − Ql|))ω̂kl,

where ρ and ς are two parameters weighting the import-
ance of each entry in Gk and Qk, respectively. These

Fig. 5a–d. a, b and c Automatically detected features (in blue) at levels 3, 4 and 5, respectively. d The feature in (c) is refined with user
interaction (foreground strokes in red, background strokes in yellow)

two parameters are used to control the preference of spe-
cific scales over others according to prior knowledge of
a mesh. In our experiments, we use ρ = 1.0 and ς = 1.0.
The multiscale similarity measure ωkl reflects not only
the contrast at the current level, but also the contrast
in the properties at all finer levels. Hence, incorporat-
ing ωkl into the aggregation process enables us to de-
tect significant geometry transitions seen at any level of
scale.

Since the multiscale measurement of each aggregate
effectively summarizes the statistical information of its
local properties, multiscale feature extraction leads to
visually more meaningful results. Figure 3 shows that
our feature-extraction method works well for models
with small fluctuating features. Figure 4 demonstrates
the effectiveness of our method for identifying desirable
boundaries within regions that are locally smooth.

3.4 Feature-boundary optimization

The boundaries of features detected at coarse levels are not
precise. We use a top-down process, similar to that of [32],
to find a precise boundary for each feature at the finest
level. Specifically, for a feature at level m with Boolean
state vector Um , we iteratively perform the following steps
until we obtain u = U0:

1. Apply the interpolation equation Um−1 � PmUm .
2. The interpolated state vector Um−1 is no longer

a Boolean vector. To bring the entries of Um−1 closer
to Boolean values, we modify Um−1 as follows:

um−1
i =

⎧
⎪⎨

⎪⎩

0 if um−1
i < δ1,

1 if um−1
i > δ2,

um−1
i if δ1 ≤ um−1

i ≤ δ2,

where δ1 = 1−δ2 ∈ [0.1, 0.2]. The region with vertices
whose state variables have values between δ1 and δ2 is
regarded as fuzzy (e.g. the red region in the left-hand
image of Fig. 6).
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Fig. 6. Left: the fuzzy region (in red) during boundary optimiza-
tion of a salient feature (in blue). Right: the final optimized feature
boundary

3. To obtain a smoother boundary, for each vertex vi in
the fuzzy region, we apply a Gauss–Seidel relaxation
sweep step [32] twice:

um−1
i =

⎧
⎪⎨

⎪⎩

0 if avgm−1
i < δ1,

1 if avgm−1
i > δ2,

um−1
i if δ1 ≤ avgm−1

i ≤ δ2,

where avgm−1
i = ∑

j∈N(i)(ωiju
m−1
j )/

∑
j∈N(i) ωij .

At the finest level, we identify those vertices with corres-
ponding state variables larger than δ2 as being within the
final salient region. Figure 6 (right) shows the intermediate
fuzzy region during optimization and the final optimized
feature boundary at the finest level.

4 Interactive geometric shape extraction

Now we present our interactive geometric feature extrac-
tion algorithm. Our user interface allows the user to draw
foreground strokes and background strokes to indicate the
inside and outside of a desired feature, respectively. We
show that the user-specified constraints can be effectively
incorporated in our bottom-up aggregation process.

Let F = { fi} and B = {bj} be the vertex indices marked
by the foreground and background strokes, respectively.
The interactive feature extraction problem can be for-
mulated as a constrained energy minimization problem:
arg minu (uTLu/1

2 uTWu) subject to u fi = 1 for fi ∈ F and
ubj = 0 for bj ∈ B.

We use a constrained weighted aggregation algorithm
to approximately solve the above minimization problem. It

is an iterative procedure with each iteration consisting of
the following steps:

1. Coupling weights reassignment. To ensure that the
foreground vertices and background vertices are
strongly coupled among themselves, we increase the
weight ωij by setting

ωij = max{ max
s∈N(i)

ωis, max
t∈N( j)

ωjt}

if both aggregates i and j belong to the foreground
or both belong to the background; we decrease the
weight ωij by setting

ωij = min{ min
s∈N(i)

ωis, min
t∈N( j)

ωjt}

if one of the aggregates i and j is from the foreground
but the other is from the background.

2. Seed selection. To have at least one foreground seed
and one background seed left at the coarsest level,
we let the foreground and background aggregates take
precedence over all other aggregates for seed selec-
tion at each aggregation level. A subset of foreground
aggregates are chosen as seeds such that each of the
remaining foreground aggregates is strongly coupled
to at least one of the foreground aggregate seeds. The
same rule is applied to the selection of seeds for the
background aggregates.

3. Modification of interpolation matrix. To ensure that
the graph is aggregated into two parts, the interpola-
tion matrix P is modified during each aggregation step.
The modification is only applied to aggregate i that is
both a non-seed and a non-stroke aggregate (neither
foreground nor background aggregate) and has all three
kinds of adjacent aggregate seeds (foreground, back-
ground and non-stroke aggregate seeds). We increase
its coupling to the foreground aggregates and the back-
ground aggregates, and decrease its coupling to the other

Fig. 7. Comparison with previous method [12]: with similar user-
specified strokes, our interactive tool gives more intuitive results
(left) than those of Ji et al. [12] (right)
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Fig. 8a–c. Extracting salient features from the hand model represented by point-based geometry with 45 K points. a Automatic extraction
without boundary optimization. b Automatic extraction with boundary optimization. c Interactive extraction. The neighborhood size is set
to 20

non-stroke aggregates by the following modification:

pi fs = βωi fs


i
, pibt = βωibt


i
, pij = (1−β)ωij


i
,

with 
i =β(
∑

ωi fs +
∑

ωibt
)+(1−β)(

∑
ωij), where

β ∈ (0.5, 1). Note that the modified weights satisfy∑N
k=1 pik = 1.

At the coarsest level, there are only a foreground seed
and a background seed left. Using the top-down bound-
ary optimization process (Sect. 3.4), we extract a salient
feature with an accurate boundary.

Figure 5 demonstrates that our interactive tool is use-
ful for extracting more precise features with only a small
set of strokes. In Fig. 7, we show a comparison example
between our method and the method proposed by Ji
et al. [12] (using code presented by the authors of [12]).
Unlike [12], which uses a feature measure (to guide the re-
gion growing from the user-specified strokes) only at the
vertex levels, our method with multiscale similarity meas-
ures is more robust to extract regions with noisy shapes or
repeated patterns.

5 Extension to point-sampled geometry

A point-sampled geometry is an unstructured set of point
samples, with each sample point specified by its location
in 3D space, normal vector, color and size [29]. Unlike
polygonal meshes, these discrete points do not have ex-
plicit connectivity between them. As our automatic and
interactive methods both depend on only the coupling
weights between adjacent points, rather than the explicit
connectivity information, our methods can be easily ex-
tended to point-sampled geometry.

We first find the neighboring points for each point. Spe-
cifically, for each point, we employ a kd-tree to locate its
k nearest neighbors efficiently. Then we build the coupling

weight between each point and its neighboring points based
on the mean curvature of each point. We exploit covariance
analysis, a robust and efficient mathematical tool in point-
sampled geometry [11, 27, 28, 37], to estimate various local
surface properties, such as the normal vector and curva-
ture. The discretization of the Laplace–Beltrami operator
described in [16] can also be used to address the discretiza-
tion of the normalized mean curvature for point-sampled
surfaces. In our paper, we find that the normal vector and
mean curvature computed using the method presented in
[37] can obtain good curvature contrast between neighbor-
ing points, and the point-sampled surfaces presented in the
paper are processed using this technique.

Here, the size of the neighborhood is important for es-
timating the local surface properties of the point-sampled
geometry [28]. In our experiments, we set all neighbor-
hood sizes between 15 and 25. With the normal and cur-
vature at each point, we can define a geometric similarity
between adjacent points. Multiscale similarity measures
can also be defined similarly.

Since the point-sampled surfaces are usually densely
point sampled, during the hierarchical aggregation pro-
cessing, the area of each segmented patch is computed
using the number of point sets in the segmented patch.

Figure 8 shows the effectiveness of our automatic and
interactive feature extraction methods on point-sampled
geometry. Similar to the boundary optimization tech-
niques used in the case of mesh models, the boundary of
the point set patch (Fig. 8b) is optimized using two Gauss–
Seidel relaxation sweep steps.

6 Partial shape matching

In this section, we introduce a simple and effective partial
shape matching approach, based on the multiscale similar-
ity measure and the energy function for detecting salient
features.
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We define a geometric saliency descriptor for partial
matching based on the theory of salience of visual parts
proposed by Hoffman and Singh [10], which says that
the saliency of a visual part depends on three factors: its
size relative to the whole object, the degree to which it
protrudes and the length of its boundaries. Our saliency
descriptor includes multiscale curvature changes and the
boundary energy function for salient features. In particu-
lar, the saliency of an aggregate S at a level m depends on
the following five factors:

– Γ(S): the energy function which determines whether S
is a salient feature,

– Area(S): the area of S relative to the total area of the
mesh,

– N(S): the number of local minimum or maximum cur-
vatures in S,

– MAC(S): the multi-average curvature vector of S, and
– MVC(S): the multi-variance curvature vector of S,

where MAC(S) is described by the vector G[m]
s :

G[m]
s = (

G
[1,m]
s , . . . , G

[m−1,m]
s , G

[m]
s

)T

and MVC(S) is described by the vector Q[m]
s :

Q[m]
s = (

Q
[1,m]
s , . . . , Q

[m−1,m]
s , Q

[m]
s

)T
.

The factors MAC(S) and MVC(S) are the average cur-
vature statistics over the aggregate S computed from its
subaggregates at all finer scales, weighted according to the
interpolation matrix [33].

Fig. 9. Self-shape matching. Left: a flower is cut out using our interactive tool. Middle left: the other five similar salient geometric features
on the Buddha model are retrieved using the partial matching operator. Middle right: aggregates at level 7. Right: given one foot extracted
using our interactive tool, three other feet are automatically retrieved

We define the saliency descriptor of aggregate S as
a vector of the multilevel properties:

FS = (Γ(S), Area(S), N(S), MAC(S), MVC(S))T,

called the saliency grade. We define the similarity measure
between aggregates S and L for partial shape matching as
Similarity(S, L) = exp(−(FS)TΛFL), where Λ is a diag-
onal matrix which weights the importance of every factor.
We set all the elements of the matrix Λ to 1 in all the ex-
amples in our paper, since we have no special interest in
any factor. Let aggregate S be at level m1 and aggregate L
be at level m2 with m1 < m2. Then, we only compare
the m1 entries in MAC(S) (MVC(S)) with the last m1 en-
tries in MAC(L) (MVC(L)). The distance between these
saliency grades is computed using the Mahalanobis dis-
tance.

We can use the saliency grade FS of aggregate S for
self-shape matching with ease. At each aggregation level,
the aggregates are chosen as seeds in descending order of
average curvature. Using the method described in Sect. 3,
all the aggregates at each level of the pyramid with low
value Γ(u) are automatically detected as the salient geom-
etry features. Then, we compute the salient grade vec-
tor FS for each feature and use it as the similarity-invariant
vector index. The geometric features are extracted off-line
and stored in a rotation- and scale-invariant database [6].
The salient geometric features S within the database with
aggregated properties most similar to the query feature T
are chosen as the features most partially matching the
query feature. Specifically, while searching through the
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database, we compute the Similarity(S, T ) between S
and T using their summarized properties FS and FT , and
then detect the features S with low Similarity(S, L) value
as the most partially matching features to the query fea-
ture. The query feature T can be chosen either using
the interactive techniques described in Sect. 4, or a user-
specified region on the shape model.

As shown in the examples in Fig. 9, we first extract
the query features (i.e. a flower on the Buddha model and
a foot on the statue model) using the interactive technique
described in Sect. 4, and then we search the feature vector
databases; the other five similar salient features (includ-
ing three other flowers) are found on the Buddha model
and three other feet are found on the statue model. It is
noteworthy that these retrieved features are visually no-
ticeable in certain aggregation levels, e.g. level 9 for the
Buddha model and level 7 for the statue model. For the
Buddha model and the statue model, there are 150 and
138 geometric features stored in their databases, respec-
tively. These examples demonstrate that using the pre-
sented saliency descriptors incorporated with the surface
multiscale curvature analysis is an efficient partial match-
ing method.

Our method is different from the method of Gal and
Cohen-Or [6] in the following aspects. First, unlike [6],
our descriptor for local shape comparison includes the
multiscale curvature change and the boundary energy
function of the features. Second, our saliency detection
is based on hierarchical vertex aggregation. It avoids the
construction of the implicit surface applied in [6] to define
the curvature and the local surface descriptors, making our
construction time and storage size much smaller.

7 Results and discussion

We have presented a variety of examples to demonstrate
the effectiveness of our automatic and interactive methods
to extract meaningful features. In this section, we discuss
the runtime complexities of our methods, and also give
more comparison results with existing methods.

Similar to the image-segmentation method of Sharon
et al. [32], the computational complexities of our uncon-
strained and constrained weighted aggregation processes
are both linear in the data size. At the finest level, very
simple aggregation is done among individual vertices. Al-
though the complexity per aggregate increases linearly
with the number of levels, the number of aggregates drops
geometrically. Despite the incorporation of the top-down
boundary optimization process, the complexity remains
linear since the finest scale of aggregates needed to opti-
mize the segment boundaries is proportional to the number
of aggregates involved.

We give the typical timing here for some examples
used in this paper, measured on a 3.2 GHz Pentium 4 PC

Fig. 10. Comparison with previous method [14]. Left: segmentation
result with Katz et al. [14] (three patches). Right (two views): result
with our method (five patches)

with 1 GB of RAM. Using our current unoptimized imple-
mentation, it takes about 1 s to build the whole hierarchy
of aggregates for the Moai model with 10 002 vertices. For
the hand model with 45 000 points, the statue model with
255 845 vertices and the Buddha model with 543 652 ver-
tices, the corresponding running times of performing the
whole bottom-up aggregation procedure are 2.5 s, 13.5 s
and 25 s, respectively.

In terms of asymptotic complexity, our method is much
faster than most of the state-of-the-art mesh-segmentation
algorithms. For example, most of them [14, 15, 21] de-
fine similarity measures based on all pairwise geodesic
distances, which are typically computed by Dijkstra’s
shortest-path algorithm in O(N2 log N) time with N de-
noting the number of vertices to be segmented.

For the initialization of the feature database for par-
tial shape matching, our method is significantly faster than
that of Gal and Cohen-Or [6], as the latter involves the
construction of an implicit surface to define the local sur-
face descriptors. For example, the initialization time for
the Buddha model is 19 min with their method (conducted
on a 3.0 GHz Pentium 4 PC with 2 GB of RAM), com-
pared with 25 s with our method.

In Fig. 10, we compare our automatic segmentation re-
sults with those by Katz and Tal [14]. We choose to use
the Igea model, since it is hard to segment due to the
bumpy hair region. The model is decomposed into three
patches in [14] using the k-means clustering. At level 9,
our bottom-up aggregation method produces five aggre-
gates. Note that the face (in red) is detected as a salient
feature with the minimal energy; the other four patches are
also detected as meaningful.

Limitations. Shape-segmentation and feature-extraction
methods are not omnipotent for all kinds of applica-
tions [2]. The salient features detected by our automatic
shape extraction method generally do not form a parti-
tion of the original surface. This means that our automatic
method is not suitable for applications which need seg-
mentation methods to analyze objects in a global sense,
e.g. skeleton extraction [14]. In addition, since our method
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strictly relies on local measures, local aggregations (even
in a multiscale manner) may not always suffice for cap-
turing some global characteristics, for example global
symmetry.

8 Conclusion

We presented a bottom-up framework to efficiently extract
meaningful features from either irregular meshes or un-
organized point sets. We introduced a multiscale geomet-
ric similarity measure, ensuring that high-level features
are obtained through local aggregation. We integrated
both automatic and interactive shape extraction methods
into the same framework. A simple and effective solution
to partial shape matching was also presented. All these
methods are very efficient, thanks to the bottom-up con-
struction process.

It is very interesting to explore other measures, apart
from curvature and normal direction, with a similar
bottom-up framework. For the multiscale measures, we
only consider the curvature statistics. We plan to incor-
porate high-level shape descriptors, for example, ridge–
valley lines [25], to facilitate feature extraction. In this
paper, we demonstrated the use of the partial shape match-
ing operator in only one application, which is self-shape
matching. Other promising applications include shape
alignment and surface reconstruction.
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