Texture Mapping for 3D Reconstruction with RGB-D Sensor
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Abstract corresponding images and lead to undesired mapping re-
sults.
Acquiring realistic texture details for 3D models is im- While projective mapping methods21, 23] can re-

portant in 3D reconstruction. However, the existence of ge- duce blurring and ghosting artifacts caused by multi-image
ometric errors, caused by noisy RGB-D sensor data, alwaysblending, the texture bleeding is unavoidable on the bound-
makes the color images cannot be accurately aligned on-ary of different views, due to geometric registration errors
to reconstructed 3D models. In this paper, we propose aand camera trajectory drift. Zhou and Koltua(] pro-
global-to-local correction strategy to obtain more desired pose an optimization framework using local image warping,
texture mapping results. Our algorithm rst adaptively s- which can compensate for geometric misalignments. How-
elects an optimal image for each face of the 3D model, ever, this method needs to subdivide the mesh model, which
which can effectively remove blurring and ghost artifacts will greatly increases the amount of data and limit its appli-
produced by multiple image blending. We then adopt a non-cation scope. Furthermore, the weighted average strategy
rigid global-to-local correction step to reduce the seaming which is usually adopted in multi-image blending is sensi-
effect between textures. This can effectively compensate fotive to the light change and motion blur cased by fast camera
the texture and the geometric misalignment caused by cam-movement.
era pose drift and geometric errors. We evaluate the pro-  To overcome the challenges, in this paper we propose a
posed algorithm in a range of complex scenes and demon-ovel texture mapping method which performs a global-to-
strate its effective performance in generating seamless highlocal non-rigid correction optimization. First, we choose an
delity textures for 3D models. optimal image for each face to avoid the arti cial effects
in multi-image blending. In the global optimization step,
] we use a uni ed color consistency and geometry consisten-
1. Introduction cy optimization to rectify the camera pose of each texture
With the emergence of RGB-D sensors, 3D reconstruc- block from different.\./iews. Then in th.e local optimization
tion has made signi cant progress in recent years. While gtep, we nd an additional transformation f_or boun_dary ver
ces of the block to re ne the texture coordinate drift caused

both small-scale objects and large-scale scenes can be mocg- . .
y geometric errors. Finally, we adopt the texture atlases to

eled with impressive geometric details)f 17, 26, 27, 2¢), the text 1o desired 3D model
the recovered texture delity for 3D models is still less sat- map the texture onto desire modet. .
isfactory [ 1 We validate the effectiveness of the proposed method in a

range of complex scenes and show high delity textures. In
contrast to the method{], our method is much faster and
needs much less triangle information. The texture blurring
artifacts are also greatly eliminated. As compared’d,[

our method can effectively reduce the seam inconsistency
between face boundaries and is tolerant of geometric mis-
alignments.

Why does texture mapping technology lag so behind 3D
modeling? The reasons are fourfold: 1) Due to the noise
of depth data, reconstructed 3D models always accompa
ny geometric errors and distortions. 2) In camera trajectory
estimation, the pose residual would be gradually accumu-
lated and lead to camera drift. 3) The timestamp between
captured depth frame and color frame is not completely syn-
chronized. 4) RGB-D_sensors are usually ir_l low resoluti_on, 2 Related Work
and the color image is also vulnerable to light and motion
conditions. All of the challenges above contribute to the  Texture mapping is an important step for acquiring real-
produce of misalignments between geometric models andistic 3D models [ 1, 16, 26, 29. In this section, we revisit



(b) View image selection (c) Global optimization  (d) Global + local optimization

Figure 1: The overview of the proposed approach. (a) The input images for texture mapping. (b) The selected optimal texture
image for each face. The numbers with different colors indicate the selected image indexes. (c) The result using only global
optimization. (d) The result of global-to-local optimization.

some kinds of related approaches that aim at improving thetexture images. Agan;j et all[apply different deformation-

effect of texture mapping. s to different images in order to t the recovered mesh. The
Blending-based methods:A commonly used way for tex-  displacement eld is computed by matching feature points
ture mapping is to blend multiple images into textur&ss| in different views through a thin-plate spline approxima-

2(0] adopting different weighted average strategies. Currenttion. Furthermore, Zhou and Koltur3({] design a texture
RGB-D reconstruction system&, 19, 7] mainly rely on mapping framework where both camera poses and geomet-
the truncated signed distance function (TSDF) representa+ic errors are recti ed via local image warping. However,
tion. That means, they need to add an additional color volu-this method needs to subdivide the mesh model, which will
metric grid, besides TSDF volumetric grid, to compute the greatly increase the amount of data and limit its application
color of each vertex by running weighted average of mul- scope. Moreover, these methods also suffer from blurring
tiple images. However, this makes such kind of methods artifacts as weighted average blending strategies are still u-
sensitive to computational noises; the blurring and ghostingtilized. More recently, Bi et al.{] use patch-based synthe-
would easily emerge if the recovered camera pose or 3Dsis to generate a new target texture image for each face to
geometry is slightly inaccurate. Moreover, the process of compensate for the camera drift and reconstruction errors,
model subdivision and the variety of model size in different but the scenes containing dynamic shadows will be a chal-
viewpoints also affect their performance. lenge to this method.

Projection-based methods:Another mechanism is projec-

tive texture mapping, which associates each face or vertex3. Qverview

with one appropriate image. Lempitsky et a&l1] use the

pairwise Markov Random Field to select an optimal image ~ The goal of this work is to map texture images onto 3D
for each face. Inspired by this work, Allene et ai] pnd ~ models which are acquired by a commodity depth camera.
Gal et al. [4] introduce additional metrics to improve the The input is a RGB-D sequence or live video that contains
data term and smooth term for selecting more appropriatedepth frames and corresponding color frames, and the out-
views. However, these methods face a challenging issueput is a 3D model accompanying high delity textures. To
that is, how to mitigate the visual seams between adjacentachieve this goal and overcome the aforementioned chal-
face textures. To overcome the problem, they have to addi-lenges, we propose a global-to-local optimization strategy
tionally add a post-process by respectively utilizing multi- which contains four main steps. Fifyshows the overview
band blending ] and poisson editing1[5. Waechter et  of the proposed approach.

al. [23] propose a global color adjustment algorithm to di- Input: The input of our algorithm is a RGB-D sequence or
minish the visual fracture caused by view projection. While live video acquired by Kinect V1. For more detailed color
these methods can greatly reduce blurring and ghosting artiinformation, it is also recommended to add an additional
facts caused by multi-image blending, the texture bleedingHD camera on top of the Kinect to obtain high resolution
is unavoidable on the boundary of different views, due to texture images. However, in justice to comparison, we still
geometric registration errors and camera trajectory drift. ~ adopt the low resolution color image of Kinect V1 as input
Warping-based methods:Different from above approach- in experiments.

es, warping-based methods have more resistance to the midPreprocess:A mesh model is reconstructed from the input
alignment problem caused by geometric errors and cameradepth sequence as initial moddl, for texture mapping,
drift. Eisemann et al.1[7] introduce a local texture warping and a subset of frames is extracted from the original color
method by estimating the optical ow between projected sequence as texture candidates. To improve the quality and



reduce computation complexity, unlik&d], we utilize [28] be computed through:

to reconstruct 3D models instead of KinectFusiog, 2],

and select texture candidate images by weighting the ele- u(u:v)) = ( Kv)=( Xt + Gy yly +¢)"; (2
ments of image clarity, jitter, blur and viewport overlay. z z

This step pré)duce an initial mod#, and a set of cam-  \yharek is the camera intrinsic matris; , f, are the focal
era poses T g correspondmg to the selected color image lengths, and, ¢, correspond to the coordinate of the cam-
subsequenckC; g and depth image subsequeniéag. era center in pinhole camera model. Furthermore, we use
Optimization: To construct high delity texture, our ap- p representing depth imag€, denoting color image anid

proach combines the advantagesziffand [30]. We select  corresponding to the intensity of color image.
an optimal texture image for each face of the model to avoid

the blurring caused by multi-image blending. Thus by re- 4.1. Model Reconstruction
garding each candidate image as a label, we formulate the The input of our pipeline is a stream of depth images

seleqtion problem into a multi-label Markov eld in compa- and an accompanying RGB color sequence. In our system,
ny \.N'th. the angle betweep camera poses and normal MaPye make use of Microsoft Kinect V1 to capture these data.
projection area and the d|star;)]ce from model face to Camerass the input frames of Kinect V1 are in low resolution and
plane. However, because bdthandM are not absolutely would be easily in uenced by motion blur and jitter effect,

accurate, adjacent faces with different labels usually can NOY, o thus select a subset of high con dence frames for scene
be completely stitched. To solve this problem, we adopt a modeling and texture mapping

global-to-local optimization strategy. For global optimiza- Our method utilize the sparse-sequence fusion (SSF)
tion, we adjust the camera pose of each texture block baseq‘nethod pe], instead of KinectFusion ] ], to recon-

on the color consistency and geometric consistency bEtWeer%truct the initial 3D model and extract high con dence col-

re'e?’f"‘”t blocks. In Ioc_al optimization stage, we ?mport an or frames. This method takes account of the jitter, blur and

additional transformat_|on fo re ne texiure coordinates on some other factors that contribute to noises in scanning. It

th_e boundary of the different blocks and make seamlesslyCan reconstruct a mesh moddl, with a sparse depth im-

stitched textures. ) - age sequenddD;g. The basic function of{d] is de ned as

Texture Atlases: Finally, we utilize texture atlases to map g jows:

the desired texture onto 3D models. Each face is project-

ed onto its associated texture image, under optimized cam- g = 1Ejit (I)*+ 2Eqir (i)+ 3Evel(i)+ Esel(i); (3)

era pose, to get projection region. Every projected region

is used to establish the texture atlases, while recording thewhereE ¢ (i) is a switch term controls the selection of depth

vertex coordinate of each triangle face. We then transfor-imageD;. It should be set td if currentimage is considered

m them into atlases space. In this way, the texture of eachas valid image to be integrated, otherwise it tae;;; (i)

vertex can be directly retrieved in atlases via texture coordi- measures the jittering effect via calculating the instant view-

nates, and generate the nal textured model. point change between selected images. The continuity term

Egi (i) is to ensure suf cient scene overlap between two

selected supporting images by accumulating camera pose

change, andE ¢ (i) evaluates the camera motion velocity.
In this section we will elaborate on each step in more Besides of these elements, in order to get high clarity im-

detail. LetM represent the reconstructed mesh model for ages, we additionally import a term to depict the quality of

texture mappingf Vig andffig are respectively the vertex each color frame. Egt shows our objective function for

set and the face set ™o, where each face represents a frame extraction:

triangle mesh on the modell is a4 4 transformation ) ] )

matrix, which transforms the vertex of M, from world E(i)= Esst (i) + caEcna(i); (4)

coordinates to local camera coordinates, as de ned by:

4. Texture Mapping Method

whereEsg is the SSF term andy, is a balance parameter.
We use 5 = 10 in our experiments, and the others are set

T = Fg tl ; Q) in accordance withZg]. Clarity termE, is de ned as:
. expi 1, ifE ==
whereR isthe3 3rotate matrix andisthe3 1 translation Eca(i) = po: i E zz: -0 (5)

vector.

We also specify the perspective projection of a 3D vertex  The blurriness value is calculated via{]. Eq. 5 shows
v = [xy;7" onto 2D image plane as. Thus the pixel that once the depth imad® is added into the supporting
coordinateu(u; v) for the vertexv on the image plane can subset, the clarity of its corresponding color im&jéas to



be calculated; otherwise, ignored directly, according to the
value ofEge (i). The iteration proceeds until all captured
images have been processed. This will produce a sparse col-
or image sequendeC; g with associate camera podeE’g,
which can be used as the texture candidates.

4.2. Texture Image Selection

Many texture mapping methods, [8, 20] project mesh
onto multiple image planes, and then adopt weighted aver-
age blending strategy to synthesize model textures from pix-
els [L1, 16]. They ideally assume that the estimated geom-
etry surfaces and camera poses are enough accurate, how-
ever in practice, this would be easily violated. Therefore, Figure 2: Clustering the model faces according to their tex-
instead of directly synthesizing from multiple images, we ture images.
respectively select an optimal texture image for each face
of the modelM . By regarding each candidate image as a
label, we formulate this selection problem into a pairwise so that the texture colors obtained through these transforma-

Markov Random Field (MRF) based o#i{ tions may be also inaccurate. In this section, we thus have to
optimizef T2g to make sure that all the faces coming from
E(C) = E4(C)+ E s(C): (6) different texture images can be closely aligned.

We rst perform a face clustering process based on tex-
ture imagd C; g, that is, if two adjacent faces correspond to
the same texture image, we put them together in the same
labeled cluster. After traversing all faces, a collection of
clusters can be obtained, as shown in Rigvith different

NEIg 80 ccl)lolrs. For the sake of clarity, we name thgt the all faces
E4(C) = areal ¢ (f)I: @) within the same cluster aschart I_n order t(_) improve ro-
bustness, if the number of facEg in a charti is less than
a thresholdFy , this chart will be merged into its closest

The smooth ternt s, described by EqB, calculates the  neighborj, which is measured by three elements: 1) The
integral along edge to measures color differences, where viewpoint angle between texture images of chiaand j
e is the common edge between adjacent faces assigned tshould be minimal. 2) The number of faces meets the crite-
different texture imagefC;; C;). " is the entire edge set of ria of F; > F . 3) The projection of all vertices in chairt

The data ternEy projects each model face onto each
candidate imag€; and measure the area of projection re-
gion, which is related to the angle view proximity, angle,
image resolution, and visibility constraint, as de ned by:

i

the modeM . onto the texture image of chgrshould still stay in bound-
Z s. We empirically seEy = 50 in our subsequent exper-
Es(C) = le( () lg( ¢(x) dx: (8) iments. Based on the clusters, we establish an undirected
e 2" © connection grapls from the charts; if two charts are ad-

jacent to each other, there will be an edge2 G linking
The MRF functionE (C) of Eq. 6 is minimized with them.

graph cuts and alpha expansiaih [ The texture for faces in the chart comes from the same
4.3. Global Optimization image, so they are well aligned. That means, in order to
generate a natural texture for the model, we only need to
The above step associates each face with an texture imadjust the textures between different charts. For ideal tex-
ageC;. However, due to the existence of geometry error and ture mapping, we believe that the boundary texture of one
camera drift, directly using texture stitching or color adjust- chart can be totally recovered by the texture of its adjacen-
ment post-processing{, 14] cannot make the textures on t charts. Based on this observation, we can align adjacent
adjacent faces visually consistent. This is the main chal- chart textures as long as it is possible to minimize the incon-
lenge for projective texture mapping methods. To eliminate sistency between associated texture and projected texture of
visual seams, we draw upon the idea of non-grid correctioneach chart and its neighbors. However, only considering the
to stitch textures between adjacent faces. color consistency may lead to misalignment in texture-less
Through extrinsic matrixT® and intrinsic matrixK, regions. Therefore, we additionally take the geometric con-
model faces can be easily projected to their associate imagesistency into consideration, which serves as a regular term
to obtain texture colors. Yet matrixT °g are always noisy,  in EqQ.9. We formulate our objective function as follows by



measuring both color consistency and geometric consisten-
cy for each chart:

chxrtN X »
E(T) = i Tivi) 150 Tjvi) 2
i j2Gj k2chart .
chgrtN '
+  depth ( (Tive) Di(( Tiv))?

i k2 chart j

9)

wherevy denotes the whole vertex set in chiasindN is its
number.chartN represents the number of chart on model
M. Function' (X) computes th& component of the vec-
tor x. Gj depicts the neighborhood of charfThe rstterm
makes the texture of chaitconsistent with the projected
texture of its adjacent chgrt The second term ensure that,
whenT changes, the optimized camera pose not only makes
the texture consistent, but also the reconstructed model to be
consistent with the depth image acquired by RGB-D camer-
a, and ensure the camera pdseot to deviate far apart from

the initial valueTy when the color constraint is insuf cien-

t. By minimizing the Eq.9, we can compute a correction (b)
transformation matrix for each chart, which makes the ad-

jacent charts closer to each other and reduces visual Seam?—"igure 3: (a) The projection area of two adjacent charts onto

4.4. Local Optimization their respective texture images. (b) Correcting the texture
coordinate of the vertex in chartA makes it align to the

While the global optimization is able to make most tex- coordinate of vertex in the texture image of chait.
tural regions stitched, for some areas with large geometric

errors (as shown in the red box of Fifc)), the textures
still could not be accurately aligned. The global optimiza- an optimal moving vector for the texture coordinate of each
tion can only correct the camera drift of each chart. If the boundary vertex and make it aligned with its adjacent chart
reconstructed geometric model is accurate enough, all textextures. To this end, we compute an additional transforma-
tures will be well stitched after the global optimization. Un- tion matrix for the vertex on the boundary of chart instead
fortunately, the ubiquity of geometry errors makes the only of calculating the moving vector directly. The additional
global optimization is insuf cient for high delity texture  transformation ensures that the chart where the vertiex
mapping. Thus we introduce a further adjustment on eachlocated is suf ciently aligned with the charts connected to
face of the model so that local textures can be also well V. Then we use this matrix to obtain the optimal projection
aligned. coordinate foiv as texture coordinate. The texture coordi-
Because all faces on one chart correspond to the saméate correction process is able to make the local texture at
texture image, there is therefore no need to optimize theeach boundary vertex to be suf ciently aligned. We de-
entire chart. In addition, as each chart has been roughlysign an objective function to compute this matrix\oto
aligned in the global optimization step, it is only necessary correct texture coordinate in the image as follows:
to perform co.rrec.:ting on a small set of vertice's to make up ChgtN vegN  ag
for texture misalignment caused by geometric errors. In- E(Ty)= (1 (C Ty Tiv)))
stead of editing the mesh model, we propose to warp the
projected coordinates of boundary vertices in each chart. As

i j k

shown in Fig.3(b), in order to align the texture at vertex e(( Ti Tevi )2 + SR v T N
we can move the projected coordinatevoin imageA to K KTk A L
align the texture o¥ in imageB. As long as the bound- J (10)
ary vertices are optimized, the texture of whole chart will

be well aligned. wherej represents the boundary vertex of chark rep-

However, moving the projection coordinate of a vertex resents the adjacent chartsiofhich share vertex andv
is a ill-posed problem. To address the challenge, we nd represents the whole vertices in chiarT; is an additional
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Figure 4: Comparisons with the state-of-the-art algorithm&effgnd [30]. (a) The results generated by4. (b) The results
produced by §0]. (c) The mapping results of our method.

transformation matrix used to correct the texture coordinate 5. Results
of vertexj, which make projection texture of vertgxin
charti consistent with the projected texture on texture im-
age of the adjacent chaet T; andT; are the transform ma-
trix optimized by global optimization for cha& and chart
B. | represents the identity matrix. The rstitem is data ter-
m, which makes the texture of the vertex on the boundary 1060 6 GB. The parametergepn =2 and req = 10 are

of chart as aligned as possible. The second item is regular“'hsed in-our gxperlhmgn;s. We Ivalldate the perfsrr:ance of

term, it ensure that the additional matrix is not deviate from tfehpropose met ho y mzm y compa(rjl_ng V\I"t the ﬁtate-

the result of global optimization. of-the-art approac e f] and [30]. We' irectly use the

i ) . code provided by the authors ¢ij] and implement a ver-
We use the Gaussian Newton iteration to solve®and  sjon of [30] by ourselves. The experiments show the outper-

Eq.10. We get the camera transformatidnfor each chart  tormance of our method, especially in challenging lighting

after the global optimization. For a vertex on the boundary 54 shadow conditions.

of chart, we obtain an additional transformation to correct Fig. 4 shows the comparison results of these three meth-
the projected texture coordinate, which can make the texture, ys in different scenes. Because of the limited frame res-

align to the texture of adjacent faces at this vertex. Then we g tion of Kinect V1, the reconstructed models miss a lot
repeat the process until all the boundary texture coordinates,s geometric details. In addition, low quality of color im-
are processed. ages also lead to the absence of texture information, which
The entire chart can be projected Viato the texture im-  causes a big challenge for texture mapping. Our method
age to get the texture coordinates, for the vertices on bound{ully takes advantage of the available image context on both
ary of the chart we further use a transformatign for non- global and local layers. The global optimization tries to
rigid correction to get corrected texture coordinates. We make the textures coming from different charts aligned as
save the texture coordinates and obtain the texture atlasesnuch as possible. In local layer, boundary textures are re-
Finally, using texture atlases technology, we can generate aned through a texture coordinate correction. As illustrat-
seamless texture model. ed in Fig.4(c), even though the doll is only 2&high, our

We evaluate the proposed approach on four datasets,
which are acquired by Microsoft Kinect V1 sensor. All ex-
periments were performed on a computer with Intel Core i7
3.6 GHz CPU, 8 GB of RAM, and NVIDIA GeForce GTX



(a) (b)

Figure 5: Texture mapping results in the scene with shadows. The area indicated by red arrow shows the error caused by
shadow. (a) The result of[]. (b) The result generated bg(]. (c) Our texture mapping result.

scene information running time (s)
model points [ faces [keyframes| Ts [ T, | T | T | 29 [ [30
toy 40705 | 79682 14 1.087] 16.501| 4.446 | 27.608 | 147.068] 341.755
book 178584 | 352510 16 2.262 | 84.792| 57.053| 157.014| 486.649| 902.207
hat 70623 | 137767 10 24751 29.193| 13.263| 59.949 | 214.774| 1002.190
keyboard| 68238 | 134475 13 4,223 | 26.478| 7.594 | 47.637 | 321.973| 1513.080

Table 1: The performance statistics 6f3], [30] and our algorithm. The running time of global optimization and local
optimization of our method is recorded through 30 iterations and 10 iterations respediivély.andT, respectively denote
the computational time required by view selection, global optimization and local optimizatigsmthe total process time of
our algorithm. The timings of(] is recorded under 30 iterations.

method is still able to produce more faithful mapping result- clearer result than the others, for example, the texture be-
s than the other approaches; the texture is very closer to theside of the keyboard cable. In our approach, the texture
original content of input images and contain rarely blurring information of shadow regions are selected from the same
and seaming artifacts. A2 J§] cannot overcome the dis- texture image or similar viewpoint images, which can effec-
turbance of geometric and camera drift, the mapping resulttively avoid the in uence of position and shape differences
generated by this approach contains obvious misalignmentn different views. In contrast,2[3] incorrectly generates
errors and texture seams. On the other hand, the weightednultiple cable textures beside the keyboard, as they only
averaging strategy adopted i#&] makes it suffer from blur ~ consider color consistency and correct the texture without
effects. This will become even more serious when the color considering the depth constraints. The results36f uffer
image resolution is low. Even with the help of local warping from blurring issue; the texture color is diluted by neighbor-
process, the texture is still blurred as shown in Bigp). ing pixels. Although it uses local warping to further correct

Table1 shows the performance statistics of the proposed the texture, due to the difference of shadow shape in mul-
algorithm, including point, face and key frame numbers, the tiple images, the blur inevitably occur after using weighted
running time of each step in our method and timings re- average. We also evaluate our algorithm in some challeng-
quested by{3] and [30]. To be fair, all methods share the N9 Scenes with sparse and sharp texture details, as shown
same model and keyframe sequences and iteration numbet? Fig. 6. The rst row shows a box with sharp shape pat-
While [23] does not optimize the geometric errors and cam- t€rns and small characters. The other is a chair covered with
era drift, it spends more time on global color correction and @ Sparse- ower style cushion. Due to its sparseness in tex-
local color stitching. We also found that the methods][ ~ tureé and lack of geometric details;9] and [3(] produce
not only correct the camera drift and geometric distortion, S€riously ghosting and blurring artifacts on these datasets.
but also subdivide the grid of 3D model, which increases  Fyrthermore, to illustrate the effect of each step in our
the amount of processing data and requires more time tharpyoposed global-to-local optimization framework, we give
ours. the comparison between only using global optimization and

Fig. 5 shows the comparison results in a challenging joint global and local process. As shown in Figa), using
shadow scene. The shadows are produced by multiple light-only global optimization, while the texture can be basically
s, and the shadow position and shape vary in different views.alignment, visual seams are still existed in the areas with
In Fig. 5(c), it is notable that our method can produce much large geometric errors; yet the local optimization can great-
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Figure 6: Comparisons on challenging datasets with sparse and sharp texture details. (a) The input image. (b) The results
reconstructed by/3]. (c) The results reconstructed by(]. (d) The results reconstructed by our method.

ture variety. This can not be solved only using color consis-
tency, but in depth image the information is rich. As shown
in Fig. 8(b), the texture can be aligned well after further

using the depth consistency constrain.

Limitation: Our method also suffers from two limitation-

s. Local optimization requires adding an af ne transforma-

tion to the texture area, yet the texture may be stretched and

shrunk on the boundary of charts. When geometric error is

large, the correction would still generate some local texture

distortions to nal mapping results. Moreover, the lack of
(a) Only global optimization (b) Global-to-local optimization  suf cient geometric details also increases the challenges in

. . L face clustering and texture sitching.
Figure 7: The results of using only global optimization and

joint global-to-local optimization. ]
6. Conclusion

In this paper, we have proposed a non-rigid texture map-
ping method for 3D models reconstructed by an RGB-D
sensor. The input of our method is an RGB-D video se-
guence, and the output is a 3D reconstruction model with
high quality texture. We introduce a global optimization
step to adjust texture positions, and design a local opti-
mization to further re ne texture boundaries. The experi-
ments show that our method can produce high delity tex-
ture models in even challenging scenes. In the future, we

(a) Without depth consistend) With depth consistency would like to import the visual saliency informatiofi4]
constraint constraint into our framework for more detailed texture recovery.

Figure 8: The results of using depth consistency constraintAcknowledgments This work was partly supported by
and without depth consistency constraint. The National Key Research and Development Program of
China (2017YFB1002600), the NSFC (No. 61472288,
61672390), Foundation of Key Research Institute of Hu-
ly reduce these artifacts as in Fig(b). manities and Social Science at Universities (16JJD870002),
Fig. 8 shows the reason why we import the depth consis- Chinese Ministry of Education, Wuhan Science and Tech-
tency constraint into our global optimization. The regions nology Plan Project (No. 2017010201010109). Chunxia
around shoes and eyes are misaligned, due to the lack of texXiao is the corresponding author.
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