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Abstract

Specular highlight detection and removal are fundamen-
tal and challenging tasks. Although recent methods have
achieved promising results on the two tasks by training on
synthetic training data in a supervised manner, they are typ-
ically solely designed for highlight detection or removal,
and their performance usually deteriorates signi�cantly on
real-world images. In this paper, we present a novel net-
work that aims to detect and remove highlights from natu-
ral images. To remove the domain gap between synthetic
training samples and real test images, and support the in-
vestigation of learning-based approaches, we �rst introduce
a dataset with about 16K real images, each of which has the
corresponding ground truths of highlight detection and re-
moval. Using the presented dataset, we develop a multi-task
network for joint highlight detection and removal, based
on a new specular highlight image formation model. Ex-
periments on the benchmark datasets and our new dataset
show that our approach clearly outperforms state-of-the-art
methods for both highlight detection and removal.

1. Introduction

Specular highlight, as a common physical phenomenon
in the real world, often presents as bright spot on shiny ma-
terial surfaces when illuminated. Highlight detection and
removal have long been fundamental problems in computer
vision. The reason is twofold. First, detecting where the
highlight is allows us to infer the light direction, scene ge-
ometry [19] and camera location. Second, removing the
effect from highlight can help improve the performance of
many vision tasks, such as object detection [14], intrinsic
image decomposition [2], and tracking [9]. Note that, for
simplicity, we referhighlight to specular highlightin this
paper, except stated de�nitely.

Early works detect highlight by treating the brightest
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Figure 1. Visual comparison of highlight detection and removal
on an example image from our dataset. We compare our method
with the state-of-the-art removal methods including Shiet al. [28],
Guoet al. [10], and Yanget al. [37], and with the state-of-the-art
detection methods including Zhanget al. [41], Li et al. [18], and
Fuet al. [6].

pixels in an image as highlights [41, 18], which has low
accuracy since it may mistake pixels with high intensities
as highlight. As for highlight removal, traditional meth-
ods are often based on optimization [13, 20, 7], clustering
[29] and �ltering [37, 38] etc, and may fail to handle large-
scale highlight removal due to lack of image semantics.
More recent methods on highlight detection and removal
are mostly deep learning-based. Although learning-based
highlight detection and removal methods have achieved re-
markable progress [28, 39, 6], they basically have two lim-
itations. First, these methods are typically trained on syn-
thetic data or a very small number of real data, so that may



Figure 2. Pipeline of our data generation. We provide a typical example in each stage. Please see Section3.2for more details.

Figure 3.Badexample regions.Left : environment lighting distor-
tion; Right: highlight residual. These pairs need to be removed.

lect multi-illumination image sequences from the MIW
dataset [23], which consists of 1016 scenes, each pho-
tographed under 25 predetermined lighting directions for a
total of 25,000 high-resolution images. The MIW dataset
contains many everyday shiny materials on which charac-
teristically appear highlights.

Stage 2: Obtaining highlight-free images.We choose the
state-of-the-art RPCA method proposed by Guoet al. [11]
to generate highlight-free images in the MIW dataset.

Stage 3: Screening high-quality regions.As RPCA may
fail to produce satisfactory highlight removal results for
sequences with complex illumination variations, we thus
screen high-quality input/output image pairs from the re-
sults produced by RPCA. The detailed procedure is as fol-
lows.

We recruited 50 subjects to manually select the high-
quality highlight removal results. To avoid distractions from
other image regions, we propose to collect high-quality in-
put/output image pairs for the highlight regions rather than
the entire image. To this end, we �rst randomly cropped
each image pair into overlapping image patches of sizek� k
with a step size ofl , wherek andl are set as 200 and 50,
respectively. In total, we produced 3,197,250 image pairs.
Next, each subject was shown with 63K image pairs (i.e.,
initial input highlight and corresponding highlight-free im-
ages), and was asked to select the high-quality image pairs.
Finally, we obtain about 16K image pairs.

Stage 4: Highlight desaturation and binarization. For
simplicity, following previous highlight removal works
[13, 37], we assume that the specular chromaticity is uni-
form (i.e., highlight is colorless). So we simply desaturate

the specular layers derived from the previous stage to re-
move colors in it. Then, we combine the results with the
highlight-free layers to produce the �nal images considered
as inputs in our dataset. In addition, we perform the bi-
narization on the highlight layers to produce their masks for
highlight detection task. Here, elements in the masks are bi-
nary values, where “1” indicates highlight regions and “0”
indicates non-highlight regions. Finally, (d), (h), (f) and (i)
in Figure2 (i.e., input and its corresponding highlight-free,
highlight as well as highlight mask images) are an example
quadruples in our dataset. Our dataset can be used simulta-
neously for highlight detection and removal tasks.

4. Highlight Image Formation

The dichromatic re�ection model [26] has been com-
monly used in the highlight removal �eld. This model for-
mulates a color image (denoted asI ) as a linear combination
of diffuse component (i.e., highlight-free layer, denoted as
D ) and specular component (i.e., highlight layer, denoted
asS):

I = D + S : (1)

Based on this model, highlight removal could be considered
as a two-signal separation problem. This means that given
the observationI , how to separate the highlight-free layerD
from the highlight layerS by relying on their unique char-
acteristics. Existing highlight removal methods based on
Equation (1) have two issues. First, the existing methods
based on Equation (1) without distinguishing the highlight
and non-highlight regions would suffer from the saturation
ambiguity problem [13]. Namely, the less saturated surface
colors are incorrectly treated as highlights to be removed,
leading to color distortion in the non-highlight regions, for
example, a white material surface (see Figure1). Second,
highlights in real-world scenes usually have a wide range of
intensity values, and have different spatial distributions. So,
nearly all traditional optimization-based methods [13, 20]
leverage a smoothness prior and do not effectively model
S to produce satisfactory results. In essence, the main rea-
son for the above issues lies in the inherent ambiguity of
modelingD andS.

To address the above issues, we present a generalized



Table 1. Comparison of the proposed dataset with existing pub-

licly available laboratory datasets. As can be seen, our dataset has

more images (several orders of magnitude larger than exiting high-

light datasets). Also, it has a wider range of highlight intensity.

Thus, it is more challenging to remove highlights (which are more

strong) in our dataset. Here, CP: cross-polarization, MI: multi-

illumination, and HI: highlight intensity.

Dataset Tan [30] Shen [27] Yang [37] Yi [39] Ours

Making method CP CP CP CP MI

Number (tuples) 2 4 4 9 16K

Background ✗ ✗ ✗ ✗ X

Highlight mask ✗ ✗ ✗ ✗ X

Mean (HI) 0.020 0.012 0.018 0.023 0.138

Std (HI) 0.029 0.027 0.028 0.021 0.182

highlight image formation model, expressed as

I = D + M 
 S ; (2)

where 
 denotes the element-wise multiplication, and M
denotes the highlight mask to indicate the locations of in-

dividually visible highlights. The above highlight image

formation model has two desirable advantages for learning-

based highlight removal methods: (1) it provides additional

position information for the network to learn about high-

light regions; (2) it allows a new highlight removal frame-

work to first detect highlights, and subsequently to oper-

ate differently on the highlight and non-highlight regions,

benefiting for producing saturation-preserving results with

natural-looking appearances.

5. Joint Highlight Detection and Removal

We design a multi-task network for Joint Specular High-

light Detection and Removal (JSHDR), based on the inverse

problem in Equation (2). To accurately detect and remove

highlights of varying sizes, we further propose a Dilated

Spatial Contextual Feature Aggregation (DSCFA) module.

5.1. MultiTask Network for Joint Highlight Detec
tion and Removal

According to Equation (2), D , S, and M are inherently

correlated, and thus computing S and M benefits for the es-

timation of D . Motivated by this observation, we develop a

multi-task convolutional neural network with DSCFA mod-

ules to jointly predicting D , S, and M in an end-to-end

manner. Figure 5 shows the schematic illustration of the

developed network. As an encoder-decoder framework, our

network first passes an input image into a series of DSCFA

modules (see Section 5.2) of an encoder and decoder frame-

work to extract highlight features F . Then, M , S and D are

predicted in a sequential order from F :

(1) M is estimated by using a convolutional block with

“Conv(3� 3) ! Conv(3� 3) ! Conv(3� 3)” on F ,

(2) S is estimated by applying another convolutional block

Figure 4. An illustration of several highlight (1st row), highlight-

free (2nd row), highlight intensity (3rd row) and highlight mask

(4th row) image quadruples in the proposed dataset.

with three 3� 3 convolutions on the concatenation of

[F ; M ],
(3) D is estimated by feeding the concatenation of

[F ; M ; S; I � MS ] into a convolutional block consisting

of three 3� 3 convolutions.

5.2. Dilated Spatial Contextual Feature Aggrega
tion Module

Figure 6 shows the schematic illustration of the proposed

DSCFA module, which extracts and aggregates multi-scale

dilated spatial contextual information simultaneously for

detecting and removing highlights at varied region sizes by

developing a series of DSCFA blocks.

DSCFA block. Contextual information has been demon-

strated to be useful for highlight detection [6] and low-level

image processing [3]. Our DSCFA block learns dilated spa-

tial features (DSF) to extract and aggregate dilated contex-

tual features from four directions. To achieve this, we first

replace the common convolution of the spatial CNN module

[24] with dilated convolutions to enlarge the receptive field

for more contextual information, and then obtain four fea-

tures (i.e., DSCNN L, DSCNN R, DSCNN D, DSCNN U)

along with four directions. Figure 7 shows a dilated

spatial module, which learns a DSCNN D, DSCNN U,

DSCNN L, and DSCNN R from input features. Spatial ag-

gregation from four directions adopt slice-by-slice convolu-

tions within feature maps from downward, upward, right-

ward, and leftward directions, thus enabling rich message

passing between pixels across rows and columns in a layer.

Then, given an input feature map, we first apply a 3� 3 con-

volution and a ReLU Layer to produce a new feature map

H . Based on H , we apply two branches to learn contextual

features. The first branch is the whole procedure of Figure 7

while the second branch is to replace the order of feature

learning at four directions, where DSCNN L, DSCNN R,



Figure 5. The pipeline of our joint highlight detection and removal network. Our network applies an encoder-decoder structure with DSCFA
modules to extract highlight featuresF from the input highlight imageI . Based onF , M , S andD are then subsequently predicted to
perform the joint highlight detection, estimation and removal.

Figure 6. The schematic illustration of the proposed DSCFA module. The input features are pass through four parallel DSCFA blocks, and
the output features of four DSCFA blocks are performed weighted fusion to produce multi-scale dilated spatial contextual features. In each
DSCFA block (dark red dashed box), input features are fed to two parallel dilated spatial convolutions with opposite convolution orders to
obtain abundant contextual infromation with different highlight characteristics.

Figure 7. Illustrations of a DSCFA block. The DSCNN module
with suf�x `D', `U', `R', and `L' indicates DSCNN with down-
ward, upward, rightward, and leftward directions respectively.

DSCNN D, and DSCNNU are obtained fromH . After
that, we concatenate features from two branches and apply
a 3� 3 convolution and a ReLU layer to obtain the output
features of our DSCFA block; as shown in Figure6.

DSCFA module. Highlight regions in an image often have
a wide range of region sizes. Figure4 shows an example,
where highlights of the input image cover from a dotted re-
gion to a very long thin shape across a whole object. Note
that the DSCFA block with a given dilation raten tends to

extract contextual information from a receptive �eld of a
�xed size. Hence, it suffers from two issues. First, the re-
ceptive �elds are maybe larger to detect small highlight re-
gions, thereby incurring a false positive result due to much
incurred noise. Second, the receptive �elds are sometimes
small for inferring a large highlight region. As a result, the
target highlight regions are partially detected and cannot be
removed completely from the input highlight image due to
insuf�cient contextual information to eliminate it. To over-
come this issue, we devise a multi-scale contextual mod-
ule, namely DSCFA module, to harvest contextual infor-
mation from multiple receptive �elds at varied scales. In
detail, as shown in Figure6, we feed the input features into
four parallel DSCFA blocks to obtain four DS features and
then use a convolutional block with “Conv(3� 3) ! ReLU
! Conv(3� 3) ! ReLU ! Conv(1� 1)” to learn an atten-
tion map with four channels to weight features from four



(a) Input (b) Shen [27] (c) Yang [37] (d) Akashi [1] (e) Yama. [36] (f) Tan [30] (g) Guo [10] (h) Shi [28] (i) Yi [39] (j) Ours

Figure 10. Visual comparison of our method against state-of-the-art highlight removal methods on real-world images from the Internet.

Figure 11. Rating percentage distribution in the user study.

6.3. Comparison with SOTA Highlight Detectors

Quantitative comparison. Table 2 reports the accuracy

and BER scores of different highlight detectors on SRW

[6] and our collected dataset SHIQ. Apparently, our method

achieves the best quantitative results on the accuracy and

BER metrics, demonstrating that our network can more ac-

curately detect highlight regions.

Visual comparison. Figure 9 visually compares highlight

detection maps produced by our network and state-of-the-

art methods. Specifically, the traditional methods [18, 41]

often wrongly detect white text texture as highlight, since

they fail to semantically distinguish highlight regions from

white material surfaces. In addition, the method proposed

in [6] fails to locate weak highlight regions. By contrast, our

method can more accurately locate spatially-varying high-

light regions, and our results are more consistent with the

ground truths.

6.4. Comparison with SOTA Highlight Removal
Methods

Quantitative comparison. Table 2 reports PSNR and

SSIM values of different methods on three datasets (i.e.,

our SHIQ, CLH, and LIME). It shows that our network has

larger PSNR and SSIM scores than all the compared meth-

ods.

Visual comparison. In Figure 8, we show the highlight re-

moval results of different methods on our dataset. From the

results, we can see that traditional methods based on opti-

mizations and color analysis either fail to effectively remove

highlight, or produce color/shading distortion. Regarding

Table 2. Quantitative comparison of our method with state-of-the-

art highlight removal methods on SHIQ, CLH, and LIME datasets.

The best results are marked in bold.

Dataset SHIQ CLH LIME [21]

Metric PSNR" SSIM" PSNR" SSIM" PSNR" SSIM"

Tan [30] 11.04 0.40 19.20 0.59 13.21 0.52

Shen [27] 13.90 0.42 19.43 0.60 14.08 0.51

Yang [37] 14.31 0.50 20.10 0.64 17.64 0.58

Akashi [1] 14.01 0.52 17.39 0.54 16.13 0.55

Guo [10] 17.18 0.58 19.57 0.61 18.03 0.60

Yamamoto [36] 19.54 0.63 20.45 0.64 19.89 0.63

Shi [28] 18.21 0.61 18.65 0.58 24.21 0.76

Yi [39] 21.32 0.72 21.86 0.73 26.77 0.79

Ours 34.13 0.86 35.69 0.88 37.01 0.91

Table 3. Quantitative comparison of our method state-of-the-art

detection methods. The best results are marked in bold.

Dataset SHIQ SRW [6]

Metric accuracy" BER# accuracy" BER#
Li [18] 0.70 18.8 0.72 20.2

Zhang [41] 0.71 24.4 0.64 24.8

Fu [6] 0.91 6.18 0.90 6.21

Ours 0.93 5.92 0.92 6.04

two CNN-based methods, Shi et al. [28] suffers from the

over-despecular problem and thus is not able to preserve

shading information, thereby resulting in unnatural-looking

results, Yi et al. [39] tends to leave parts of highlight in the

highlight removal results. Fortunately, our method can pro-

duce high-quality results, which are considerably similar to

the ground truths.

User study. To further evaluate the performance of our net-

work on real-world highlight images, we collect 200 im-

ages and conduct a user study to evaluate the results of

different methods. Specifically, we download 200 test im-

ages from Pinterest by searching with keywords like jade,

sculpture and mask. Then, we test all methods on 200col-

lected images to produce their results of estimating under-

lying highlight-free counterparts, and recruit 20 students to

rate different results, which are listed for rating in a random



(a) Input M4 M5 M6 Complete

Figure 12. Ablation study for our DSCFA module.

(a) Original (b) Input (c) Ours (d) Input (e) Ours

Figure 13. Example failure cases with colored lighting. (b) and (d)

are two composited color versions of (a).

Table 4. Component analysis of the proposed method on our

dataset for highlight removal. The best results are marked in bold.

Methods Ours M 1 M 2 M 3 M 4 M 5 M 6 M 7

PSNR" 34.13 32.09 31.81 26.19 31.53 33.67 34.02 18.34

SSIM" 0.86 0.82 0.80 0.76 0.80 0.81 0.83 0.61

order to avoid subjective bias. We use the PoV metric [6]

to evaluate the users’ preference, and a larger PoV value

indicates a better highlight removal result. Figure 11 sum-

marizes the average rating results on all 200images for two

questions of the user study, showing our method achieves

the largest PoV values among all methods. It indicates

that our method has the highlight removal results of our

method are more preferred by human subjects. Moreover,

Figure 10 visually shows the results of different methods

for two downloaded images, demonstrating that our method

has a superior performance of highlight removal.

6.5. Discussions

Ablation study. To validate the effectiveness of the ma-

jor components of our network, we accordingly modify our

network to construct seven baselines:

� M 1: JSHDR w/o highlight detection.

� M 2: JSHDR w/o highlight detection and estimation.

� M 3: JSHDR with only highlight estimation.

� M 4: use only one DSCFA block in the DSCFA module

of our JSHDR.

� M 5: use two DSCFA blocks in the DSCFA module of

our JSHDR.

� M 6: use three DSCFA blocks in the DSCFA module

of our JSHDR.

� M 7: replace DSCFA modules of our JSHDR with sim-

ple convolution operations.

Table 4 lists the PSNR and SSIM results of our network

and seven baselines. From the results, we have the follow-

ing observations: (1) Our network has a superior PSNR and

SSIM performance over M 1, M 2, and M 3, showing that ad-

ditional highlight detection and estimation in the multi-task

learning of our network help our network to better recover

the highlight-free results. (2) The higher PSNR and SSIM

scores of our method than M 4 and M 5, and M 6 demonstrate

that progressively adding the number of DSCFA blocks im-

proves the highlight removal performance, and our network

with four DSCFA blocks has the best performance. Fig-

ure 12 shows visual results of our network, M 4, M 5, and

M 6, showing that our network has the best performance

of highlight removal. (3) Our network has a better PSNR

and SSIM performance over M 7, showing that the effec-

tiveness of DSCFA over a basic convolution. In the nut-

shell, it indicates that with the help of the designed multi-

task scheme and the DSCFA module, our method can effec-

tively remove highlight while preserving shading/saturation

very well, thereby leading to natural-looking results.

Limitations. Our method has two limitations. First, our

method is less able to effectively remove highlights in col-

ored lighting. Figure 13 presents two examples where our

method, as well as previous methods, all fail to produce vi-

sually satisfactory results. Second, our method and even

state-of-the-art inpainting methods are not able to recover

text textures since there are no meaningful and reliable con-

textual cues to help restore them.

7. Conclusion

In this paper, we have presented a large-scale real dataset

with about 16K image quadruples that covers a diversity of

real-world highlight scenes. Besides, based on the classic

dichromatic reflection model, a new region-dependent high-

light image formation model is proposed for highlight de-

tection, which provides useful information for highlight re-

moval. Based on this model, we proposed a multi-task con-

volution network for joint highlight detection and removal.

Extensive experiments illustrate that in comparison to pre-

vious methods, our method can effectively handle spatially-

varying highlights, while preserving shading well.

In the future, we will incorporate an illumination color

estimation module into our network and extent our method

to handling colored-illumination scenes. Moreover, we will

take our method as a pre-processing step for intrinsic im-

age decomposition [5, 8] and recoloring [40], and take our

DSCFA as a common feature extraction module for derain-

ing [32, 33] and dehazing [31].
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